• Title/Summary/Keyword: Die making

Search Result 168, Processing Time 0.025 seconds

Development of Tool Selection System Aiding CAM Works for Injection Mold (사출금형 CAM 작업 지원용 공구 선정 시스템 개발)

  • 양학진;김성근;허영무;양진석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.175-179
    • /
    • 1997
  • As consumer's desire becomes various, agility of mold manufacturing is most important factor for competence of manufacturer. In common works to use commercial CAM system to generate tool path, some decision making process is required to produce optimal result of CAM systems. We propose tool selection procedures to aid the decision making process. The system provides available tool size for machining of design model part of injection mold die by analyzing sliced CAD model of die cavity and core. Also, the tool size information is used to calculate machining time. The system is developed with commercial CAM using API. This module will be used for optimization of tool selection and planning process.

  • PDF

Development of Manufacturing Technology for Milli-Structure (Milli-Structure 생산기술개발)

  • 나경환;박훈재;조남선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1039-1042
    • /
    • 2000
  • This research will deal with Innovative manufacturing technology for milli-structure manufacturing technology which is located betweon the traditional manufacturing technology for macro-sized structure and the recently emerging manufacturing technology for micro-scaled structure such as MEMS. There are four fields in this research, which are micro-sheet metal forming technology, micro-bulk forming technology micro-molding technology and micro die making technology. As a project for new-technology in next generation, this research will be carried out through three terms and each term and be composed of three years.

  • PDF

Mechanical Characteristic Evaluation of Proper Material for Ultra-fine Dies (초소형 금형소재의 기계적 특성평가)

  • KANG Jae-hoon;LEE Hyun-yong;LEE Nak-kyu
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.473-476
    • /
    • 2005
  • Today's manufacturing industry is facing challenges from advanced difficult-to-machine materials (WC-Co alloys, ceramics, and composites), stringent design requirements (high precision, complex shapes, and high surface quality), and machining costs. Advanced materials play an increasingly important role in modem manufacturing industries, especially, in aircraft, automobile, tool, die and mold making industries. The greatly-improved thermal, chemical, and mechanical properties of the material (such as improved strength, heat resistance, wear resistance, and corrosion resistance), while having yielded enormous economic benefits to manufacturing industries through improved product performance and product design, are making traditional machining processes unable to machine them or unable to machine them economically. In this paper, mechanical characteristic evaluation test of fine powder type WC-Co alloy was accomplished to obtain clear data for miniaturized special die parts machining with high reliability and high quality.

  • PDF

HIGH-SPEED MILLING FOR DIE AND MOLD MAKING

  • Na, T.kagawa
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.51-60
    • /
    • 2000
  • High-speed milling machine is being sold mainly in the market of die and mold industries, because it reduces machining time greatly as proportion to the spindle speed of machine tool. From the experimental milling tests, it has been cleared that the ball end mill is quite suitable for high speed milling and also tool wear reduces in higher speed milling condition. And a new milling concept with ultra high speed over 100, 000 rpm is proposed for solving the various problems such as NC cutter path generation and NC feed conformity etc.

  • PDF

DIMENSIONAL ACCURACY OF EPOXY RESINS AND THEIR COMPATIBILITY WITH IMPRESSION MATERIALS (EPOXY RESIN의 정확도와 인상재와의 친화성에 관한 연구)

  • Chang, Su-Kyoung;Chang, Ik-Tae;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.383-394
    • /
    • 1999
  • The indirect technique for making cast restoration requires that dies be as accurate and durable as possible. Currently, stone is the most commonly used material for die. However, it has some problems such as the weakness in its strength and low abrasion resistance. Recently, epoxy resin die systems have become available. The purpose of this study was to examine two commercially available resin die systems and evaluate some characteristics for their clinical performance. This study evaluated the dimensional accuracy of epoxy resins and their wettability with impression materials. In this study, the first experiment was about dimensional accuracy of different die materials. The master model was made of stainless steel. 10 models were made of two epoxy resins (Die-epoxy, Tri-epoxy) and a die stone (Fujirock) each. Occlusal diameter (Dimension I), occluso-gingival height (Dimension II), and interabutment distance (Dimension III) were measured in each model. Next, the contact angles of die materials with impression materials were observed. The blocks were made of polyether, hydrophilic additional silicone, polysulfide impression materials. By drop-ping the same amount (0.05ml) of Tri-epoxy, Die-epoxy, and die stone on the blocks, 10 samples of each die material were made. After setting of materials, the contact angles were measured. The results of this study were as follows. 1. The expansion of stone die and the shrinkage of resin dies in occlusal diameter were observed, and stone and Tri-epoxy were expanded and Die-epoxy was shrinked in occluso-gingival height. There was little change among materials in interabutment distance (p<0.05). 2. In comparison with the master model Tri-epoxy had the least variation in measurement of the three die systems examined. Die-epoxy was next, and die stone showed the greatest variation. 3. The compatibility of die stone for polyether, hydrophilic additional silicone, polysulfide decreased in order, wherease epoxy materials had the decreased compatibility for polyether and polysulnde, hydrophilic additional silicone in order. It was not statistically different between polyether and polysulfide (p<0.05). 4. The contact angles of Tri-epoxy, Die-epoxy, die stone were getting bigger in order.

  • PDF

Die Stress Reduction Design and Mechanical Properties Analysis of Warm Forging Process for the Application of Warm-Closed Forging of Automative Steering Unit Yoke (자동차 조향장치 부품 요크의 온간 밀폐 단조 적용을 위한 금형 응력 저감 설계 및 온간 단조품의 기계적 특성 분석)

  • Seong, S.G.;Kim, K.H.;Lee, Y.S.;Lee, S.Y.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, finite element analyses were performed by applying a stress ring and split die design to relieve the tensile stress acting on the die due to high surface pressure during warm-closed forging. The applied material was a yield-ratio-control-steel (YRCS). It was used without quenching or tempering after forging. In the case of stress rings design, the number of stress rings and the tolerance for shrink fit were different. Vertical and horizontal splits were applied for insert die split design. Case 5 die with three stress rings, 0.2 % shrink fit tolerance, and vertical split was selected as an effective die design for tensile stress reduction. Based on die stress reduction analyses, Case 5 die for warm-closed forging was produced and smooth forgeability was secured, making it possible to manufacture forging product of yoke with the required geometry. In addition, controlled cooling using warm forging heat was applied to secure mechanical properties of yokes. When oil cooling was used for direct controlled cooling after warm-closed forging, a relatively uniform Rockwell hardness distribution and high mechanical properties could be obtained.

A Study on the Manufacturing Cold Forging Dies by Cold Hobbing (콜드호빙에 의한 냉간단조용 금형제작에 관한 연구)

  • Yoo, Heonil;Kim, Sei-Hwan;Seo, Hee-Kang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.594-603
    • /
    • 1996
  • It has been known that the life time of cold forging dies is shorten by the cracks and wear produced during the operation. Thus it is required to mak the same new one too often, At this time of making new ont the cutting work and electical discharge machining were mormally used. But the precision of product is declined in every times of making the mew dies due to the diffefence in dimensional accuracy arised from the electical discharge machining. Especially it can't meet the delivery date because the production was delayed for making another die. Furthemore it has the problem of increasing the production cost. Therfore inthis study we tried to solve these problems using the hobbing method instead of electical discharge machining.

Semi-Solid Forming Process of Thin Products (박막 성형품의 반응고 성형공정)

  • 서판기;정용식;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.60-63
    • /
    • 2003
  • Semi-solid forming is the process of stirring alloy during solidification, making the mixture of liquid and solid, solidifying it, reheating it to the solid-liquid coexistent temperature, and then injecting this semi solid slurry into dies. In the semi-solid die casting process, it is very important to find out the correlation of injection condition, microstructure and mechanical properties. Especially, an improper injection condition is the main cause of liquid segregation and non-homogeneous mechanical properties due to the difference of solid fraction according to the position of the products. To ensure the database requisite to the semi-solid die casting product, it is essential to acquire the mechanical properties considering liquid segregation to the injection condition. In this study, the effect of injection condition on liquid segregation, formability, microstructure and mechanical properties in a thin product was investigated.

  • PDF

Experimental Study of Developing D/B for Polishing Automation of Die and Mold (금형면 자동 다듬질 장치의 D/B 구축을 위한 실험적 연구)

  • 안유민
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.80-86
    • /
    • 2000
  • Although polishing process take 30-50% of whole process of manufacturing die and mold it has not been fully automat-ed yet. Considering current trend of manufacturing it is necessary to study on polishing automation. To accomplish automation reliable database must be developed. For developing it polishing mechanism should be defined and a general empirical formula that can be applied widely should be created. In this paper it is found that polishing process must be separated into 2 process such as removing cusp and getting fine surface process and the polishing parameter which is com-posed of major machining parameters and normalization of data can be applied efficiently in making reliable database.

  • PDF