• Title/Summary/Keyword: Die filling

Search Result 187, Processing Time 0.023 seconds

Optimization of injection molding to minimize sink marks for cylindrical geometry (원통형 플라스틱 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화)

  • Kwon, Yun-Suk;Je, Duck-Keun;Jeong, Young-Deug
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.33-37
    • /
    • 2008
  • This paper describes the optimization of injection molding conditions to minimize sink marks. Sink marks, which refer to a small depression on the surface opposite a thick wall thickness, are often encounted in injection molded plastic parts. Part geometry, material properties and processing conditions during injection molding can affect the sink mark depth. We designed the runner system which is possible balanced filling to cavities using CAE program and then obtained optimal processing conditions by Taguchi's Robust Design technique. By actual injection molding using optimized mold and molding conditions, it confirmed that sink mark depth decreased zero compared to 1mm level in the conventional mold and process.

  • PDF

Process Design of a Hot Forged Product Using the Artificial Neural Network and the Statistical Design of Experiments (신경망과 실험계획법을 이용한 열간 단조품의 공정설계)

  • 김동환;김동진;김호관;김병민;최재찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.15-24
    • /
    • 1998
  • In this research. we have proposed a new technique to determine .the combination of design parameters for the process design of a hot forged product using artificial neural network(ANN) and statistical design of experiments(DOE). The investigated problem involves the adequate selection of the aspect ratio of billet, the ram velocity and the friction factor as design parameters. An optimal billet satisfying the forming limitation, die filling, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of artificial neural network and considering the analysis of mean and variation on the functional requirement. This methodology will be helpful in designing and controlling parameters on the shop floor which would yield the best design solution.

  • PDF

Development of the Simulated Die Casting Process by using Rapid Prototyping (쾌속 조형 공정을 이용한 다이캐스팅 제품의 시작 공정 개발)

  • Kim K. D.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.180-186
    • /
    • 2002
  • The simulated die-casting process in which the traditional plaster casting process is combined with Rapid Prototyping technology is being used to produce Al, Mg, and Zn die-casting prototypes. Unlike in the die-casting process, molten metal in the conventional plaster casting process is fed via a gravity pour into a mold and the mold does not cool as quickly as a die-casting mold. The plaster castings have much larger and grosser grain structure as compared as the die-castings and the thin walls of the plaster mold cavity may not be completely fillet Because of lower mechanical properties induced by the large grain structure and incomplete Idling, the conventional plaster casting process is not suitable for the trial die-casting Process. In this work, an enhanced trial die-casting process has been developed in which molten metal in the plaster mold cavity is vibrated and pressurized simultaneously. Patterns for the casting are made by Rapid Prototyping technologies and then plaster molds, which have runner system, are made using these patterns. Imparted pressurized vibration to molten metal has made grain structure of castings much finer and improved fluidity of the molten metal enough to obtain complete filling at thin walls which can not be filled in the conventional plaster casting process.

  • PDF

An approach to improve thickness distribution and corner filling of copper tubes during hydro-forming processes

  • GhorbaniMenghari, Hossein;Poor, Hamed Ziaei;Farzin, Mahmoud;Alves De Sousa, Ricardo J.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.563-573
    • /
    • 2014
  • In hydroforming, the general technique employed to overcome the problem of die corner filling consist in increasing the maximum fluid pressure during the forming process. This technique, in other hand, leads to other difficulties such as thinning and rupturing of the final work piece. In this paper, a new technique has been suggested in order to produce a part with complete filled corners. In this approach, two moveable bushes have been used. So, the workpiece moves driven by both bushes simultaneously. In the first stage, system pressure increases until a maximum of 15 MPa, providing aninitial tube bulge. The results showed that the pressure in this stage have to be limited to 17 MPa to avoid fracture. In a second stage, bushes are moved keeping the constant initial pressure. The punches act simultaneously at the die extremities. Results show that the friction between part and die decreases during the forming process significantly. Also, by using this technique it is possible to produce a part with reasonable uniform thickness distribution. Other outcomes of applying this method are the lower pressures required to manufacture a workpiece with complete filled corners with no wrinkling.

Development of µ-PIM standard mold with exchangable insert core in order to manufacture micro pattern (마이크로 패턴 성형을 위한 인서트 코어 적용 µ-PIM 표준금형 개발에 관한 연구)

  • Park, Chi Yoel;Seo, Chan-Yoel;Kim, Yongdae
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.29-34
    • /
    • 2017
  • Increased demand for parts with micro-pattern structure made of metals, ceramics, and composites in various fields such as medical ultrasonic sensors, CT collimators, and ultra-small actuator parts. Micro powder injection molding (PIM) is a technology for manufacturing micro size, high volume, complex, precision, net-shape components from either metal or ceramic powder. In the present study, a standard mold with a variable insert core capable of producing various micro patterns was investigated. An injection molding test was performed on a standard mold using a line type micro-pattern core having an aspect ratio of 2, a slenderness ratio of 70, a pattern size of $200{\mu}m$, and a pattern spacing of $150{\mu}m$. During the filling process, the deformation of the mold with large aspect ratio and slenderness ratio was analyzed by the experiment and the numerical simulation according to the position of the gate. We proposed a mold structure that minimizes mold deformation by gate modification and enables uniform pattern filling behavior.

Characteristic of Through Silicon Via's Seed Layer Deposition and Via Filling (실리콘 관통형 Via(TSV)의 Seed Layer 증착 및 Via Filling 특성)

  • Lee, Hyunju;Choi, Manho;Kwon, Se-Hun;Lee, Jae-Ho;Kim, Yangdo
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.550-554
    • /
    • 2013
  • As continued scaling becomes increasingly difficult, 3D integration has emerged as a viable solution to achieve higher bandwidths and good power efficiency. 3D integration can be defined as a technology involving the stacking of multiple processed wafers containing integrated circuits on top of each other with vertical interconnects between the wafers. This type of 3D structure can improve performance levels, enable the integration of devices with incompatible process flows, and reduce form factors. Through silicon vias (TSVs), which directly connect stacked structures die-to-die, are an enabling technology for future 3D integrated systems. TSVs filled with copper using an electro-plating method are investigated in this study. DC and pulses are used as a current source for the electro-plating process as a means of via filling. A TiN barrier and Ru seed layers are deposited by plasma-enhanced atomic layer deposition (PEALD) with thicknesses of 10 and 30 nm, respectively. All samples electroplated by the DC current showed defects, even with additives. However, the samples electroplated by the pulse current showed defect-free super-filled via structures. The optimized condition for defect-free bottom-up super-filling was established by adjusting the additive concentrations in the basic plating solution of copper sulfate. The optimized concentrations of JGB and SPS were found to be 10 and 20 ppm, respectively.

Quality Evaluations of Induction Motor Rotors during Die Casting Process (유도전동기 회전자 금형주조 시 품질평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.115-120
    • /
    • 2018
  • This study examined the cast quality of small-sized induction motor rotors during the die casting process. Numerical analyses with 3-dimensional half models were performed to investigate the filling patterns of aluminum molten metals into a mold after high-speed injections. The following were obtained from numerical analyses and experimental results. First, molten metals started to fill the lower end ring, then moved horizontally to fill the core slot and upper end ring, and finally stopped to fill the rotor core slot. Second, circulation of molten metals occurred at the lower end ring, resulting considerable porosity at the section of lower end ring from the experimental results. Third, further work for obtaining sound quality of rotor core cast is required to develop a new shape of the rotor core cast or improve the die casting conditions.

A study on the measurement of cavity pressure and computer simulation (성형조건에 따른 캐비티 내압 측정 및 컴퓨터 모사)

  • Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, D.W.;Kim, K.Y.;Lyu, M.Y.
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.163-166
    • /
    • 2008
  • Injection molding operation consists of filling, packing, and cooling phase. The highest pressure is involved during the packing phase among the operation phases. Cavity pressure depends upon velocity to pressure switchover time and magnitude of packing pressure. The cavity pressure is directly related to stress concentration in the cavity of mold. Thus the observation and control of cavity pressure is very important to prevent mold cracking. In this study, cavity pressures were observed for operational conditions using the commercial CAE software,Moldflow. Operational conditions were velocity to pressure switchover time and packing pressure. Cavity pressures were also measured directly during injection molding. Simulation and experimental results showed good agreement.

  • PDF

A Study on the Fine Blanking Process of Stopper Part (Stopper 부품의 파인블랭킹공정에 관한 연구)

  • 김영호;손경호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.182-186
    • /
    • 1996
  • In this work, a method is described to investigate the progressive and compound process in the coining and piercing operation for given conditions and parameters, using the FEM simulation and model experiment. The effect of the die shape on the compound process is established, and the die shape depends on the position of coining die and the width of the part coined. It is found that Progressive process is better than compound process, since material's filling into the die is not completed and the higher stress acts on the edge of the punch according to width being increased.

  • PDF

Development of Die Design System for Turbine Blade Forging (터빈 블레이드의 형단조 금형설계의 자동화에 관한 연구)

  • 최병욱;조종래;왕지석;김동권;김동영
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.569-575
    • /
    • 1999
  • Computer programs have been developed to design the forging dies of turbine and compressor blades. The design of forging dies is based the side force and the filling of die cavity. In this study, slab method has been applied to simulate forging processes numerically. the program composed of Visual Basic also provides the informations of mean stress, total forging load, distribution of temperature, position of neutral line, total volume and volume of flash in the final stage to users. The preform position is predicted by the reverse slab method. The program has been successfully applied to various types of turbine blades.

  • PDF