• 제목/요약/키워드: Die Wear

Search Result 209, Processing Time 0.019 seconds

A Study on the Prediction of Die Wear using Wear Model (마멸모델을 이용한 금형마멸 예측에 관한 연구)

  • Park, Jong-Nam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.90-96
    • /
    • 2013
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures is to develop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the wear experiments to obtain the wear coefficients and the upsetting processes was accomplished to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes was accomplished by the rigid-plastic finite element method. The result from the deformation analysis was used to analyse the die wear during the processes and the predicted die wear profiles were compared with the measured die wear profiles.

A Study on the Prediction of Die Wear using Wear Model (마멸모델을 이용한 금형마멸 예측에 관한 연구)

  • Park, Jong-Nam
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. The mechanisms of wear are consisted of adhesion, abrasion, erosion and so on. Die wear affects the tolerances of formed parts, metal flow, and costs of process. The only way to control these failures is to develop a prediction method on die wear suitable in the design state in order to optimize the process. The wear system is used to analyse 'operating variables' and 'system structure'. In this study, with AISI D2, AISI 1020, AISI 304SS materials, a series of the wear experiments of pin-on-disk type to obtain the wear coefficients from Archard's wear model and the upsetting processes are carried out to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes are performed by the rigid-plastic finite element method. The result of the analysis is used to investigate the die wear the processes, and the analysis simulated die wear profiles are compared with the experimental measured die wear profiles.

  • PDF

Experimental and Analytical Study on the Die Wear during the Upsetting Processes (업셋팅 금형의 마모 실험 및 해석)

  • 박종남;김태형;강범수;이상용;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.122-130
    • /
    • 1996
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures is to develop methods which allow prediction of die wear and costs of process etc. The only way to control these failures is to develop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the wear experiments to abtain the wear coefficients and the upsetting processes was accomplished to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes was accomplished to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes was accomplished by the rigid-plastic finite element method. The result from the deformation analysis was used to analyse the die wear during the processes and the predicted die wear profiles were compared with the measured die wear profiles.

  • PDF

Wear Analysis of Hot Forging Die considering Thermal Softening (열연화 현상을 고려한 열간 단조 금형의 마멸해석)

  • 이진호;김동진;김병민;김호관
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 2000
  • The die wear is one of the main factors affecting product accuracy and die life in hot forging process. It is desired to analyze die wear by developing wear prediction method combined with FE-simulatin and experiment. Lots of researches have been done into the wear analysis of cold forging die, and the results of those researches were successful, but there have been little applications to hot forging die giving successful results. That is because hot forging process has many factors influencing die wear, and there was not accurate in-process data. In this research, change of die surface hardness by thermal softening during the lifetime was obtained by experiment, and hardness distribution of cross section was measured. This wear analysis was applied to hot forging die, and gave comparatively good results compared with actual wear profile.

  • PDF

Analysis of die wear in wire drawing with temperature effect (온도상승을 고려한 인발금형의 마모해석)

  • Kim, Byeong-Min;Cho, Hae-Yong;Kim, Tae-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.116-122
    • /
    • 1996
  • In forming processes, die failure must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. The die wear affects the tolerances of formed parts, metal flow and costs of processes etc. The only way to control these failures is to develop methods which allow prediction of the die wear and which are suited to be used in the design state in order to optimize the process. In this paper, wire drawing processes were simulated using the rigid-plastic finite element method and its results were used for predicting the die wear by Archard's wear model. The effects of the temperature rising on the wear profiles of die were also investigated. The simulation results were compared with the measured die profiles.

  • PDF

A Study on Prediction of Die Life of Warm Forging by Wear(I) -Construction of Die Wear Model- (마멸에 의한 온간단조의 금형수명 예측에 관한 연구(I) -금형 마멸 모델의 정립-)

  • 강종훈;박인우;제진수;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.88-93
    • /
    • 1998
  • The service life of tools in metal forming process is to a large extent limited by wear, fatigue fracture and plastic deformation. In warm forging processes wear is the predominant factor for operating lives of tools. To predict tool life by wear, Archard's wear model is generally applied. Usually hardness of die is considered to be a function of temperature in Archard's wear model. But hardness of die is a function of not only temperature but also operating time of die. To consider softening of die by repeated operations, it is necessary to express hardness of dies by a function of temperatures and operating time. By experiment of reheating of dies, die softening curves were obtained. Finally modified Archard's wear model in which hardness of die was expressed as a function of main tempering curve was proposed.

  • PDF

Design of STS304 Extrusion Die for Wear Reduction (스테인리스강 압출금형의 마멸 감소를 위한 설계)

  • Kim, T.H.;Kim, B.M.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.106-113
    • /
    • 1996
  • Using stainless steel as the cold forged parts especially the outer parts of automobile is gradually increasing because it can bear up against the erosion and the wear. During cold forging of the stainless steel the working pressure acting on die surface are very high therefore the wear on die surface can be greatly increased. In cold forging processes, die failure must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. The die wear affects the tolerances of forged parts, metal flow and costs of processes etc. The only way to to control these failures is to develop methods which allow prediction of the die wear and which are suited to be used in the desing stage in order to optimize the process. In this paper, the rigid-plastic finite element method was combined with the wear prediction routine and then the forward extrusion process using stainless steel was analysed simultaneously. To minimize the die wear the FPS algorithm was applied and the optimal conditions of die configuration are suggested.

  • PDF

Methodology of Perform Design for Reducing Tool Wear in Cold Forging (냉간 단조 금형의 마멸 감소를 위한 예비성형체 설계방법)

  • 이진호;고대철;김태형;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.164-167
    • /
    • 1997
  • The die wear is one of the main factors affecting die accuracy and tool lifetime. It is desired to reduce die wear by developing simulation method to predict wear based on process parameters, and then optimize the process. Therefore, this paper describes disign methodology of preform for minimizing wear of finisher die in multi-stage cold forging processes. The finite element method is combined with the routine of wear prediction and the cold forging processes. The finite element method is combined with the routine of wear prediction and the cold forging process is analyzed. In order to obtain preform to minimize die wear, the FPS algorithm is applied and the optimal preform shape is found from iterative deformation analysis and wear calculation.

  • PDF

Estimation of Die Service Life for Die Cooling Method in Hot Forging (금형냉각법에 따른 열간 단조 금형의 수명 평가)

  • 김병민;김동환
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.408-413
    • /
    • 2003
  • Dies may have to be replaced for a number of reasons, such as changes in dimensions due to die wear or plastic deformation, deterioration of the surface finish, break down of lubrication and cracking or breakage. In this paper, die cooling methods have been suggested to improve die service life considering die wear and plastic deformation in hot forging process. The yield strength of die decreases at higher temperatures and is dependent on hardness. Also, to evaluate die life due to wear, modified Archard's wear model has been proposed by considering the thermal softening of die expressed in terms of the main tempering curve. It was found that the use of die with cooling hole was more effective than that of direct cooling method to increase the die service life for spindle component.

A Study on Life Estimation of a Forging Die (단조 금형의 수명 평가에 관한 연구)

  • Choi, C.H.;Kim, Y.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.479-487
    • /
    • 2007
  • Die life is generally estimated taking failure life and wear amount into consideration. In this study, the forging die life was investigated considering both of these two factors. The fatigue life prediction for the die was performed using the stress-life method, i.e. Goodman's and Gerber's equations. The Archard's wear model was used in the wear life simulation. These die life prediction techniques were applied to the die used in the forging process of the socket ball joint of a transportation system. A rigid-plastic finite element analysis for the die forging process of the socket ball was carried out and also the elastic stress analysis for the die set was performed in order to get basic data for the die fatigue life prediction. The wear volume of the die was measured using a 3-dimensional measurement apparatus. The simulation results were relatively in good agreement with the experimental measurements.