• Title/Summary/Keyword: Die Stress Analysis

Search Result 230, Processing Time 0.022 seconds

A study on excavator front support parts to minimize springback defects (굴삭기 Front Support 부품 뒤틀림 결함 최소화 방안 도출)

  • Jeon, Yong-Jun;Heo, Young-Moo;Lee, Ha-Sung;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.40-45
    • /
    • 2018
  • Recently, in construction equipment machinery production, development has focused on environmentally-friendly functions to improve existing production capacity. For excavators as well, emphasis has been placed on response to environmental regulations, miniaturization, and noise reduction, while technology is being developed considering cost reduction and safety.Accordingly, the front support, an inner reinforcement part of the excavator, as well as high-strength steel plates to improve safety and reduce weight, are being applied.However, in the case of high-strength materials, Springback occurs in the final formed part due to high residual stress during product forming. Derivation of a forming or product shaping process to reduce springback is needed. Accordingly, regarding the front support, an inner reinforcement part of the excavator, this study derived a method to improve springback and secure shape stiffness through analysis of the springback occurrence rate and springback causes through a forming analysis.As for the results of analyzing the springback occurrence rate of existing products through forming analysis, springback of -22.6 mm < z < 27.35 mm occurred on the z-axis, and it was confirmed that springback occurred due to the stiffness reinforcing bead of the upper and middle parts of the product.To control product residual stress and springback, we confirmed a tendency of springback reduction through local pre-cutting and stiffness reinforcement bead relocation.In the local pre-cutting model, springback was slightly reduced by 5.3% compared with the existing model, an insignificant reduction effect. In the stiffness reinforcement bead relocation model, when an X-shaped stiffness reinforcement bead was added to each corner portion of the product, springback was reduced by at least 80%.The X-shaped bead addition model was selected as the springback reduction model, and the level of stiffness compared to the existing model was confirmed through a structural analysis.The X-shaped bead additional model showed a stress springback of 90% and springback reduction of 7.4% compared with the existing model, indicating that springback and stiffness will be reinforced.

A Study on the Bend Deformation Cause Analysis of CAE Applied Wire to Board Connectors (압접 커넥터 CAE 적용 휨 변형 원인 분석에 관한 연구)

  • Jeon, Yong-Jun;Shin, Kwang-Ho;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.19-25
    • /
    • 2016
  • Connectors are very important components that transmit electric signals to different parts. It must maintain intensity of the connector to prevent defects from impact and maintain contact to transmit electric signals. Most of the external parts of the connector, which act as the main framework, are formed by injection molding. However, bend deformation occurs for injection molded products due to the residual stress left inside the product after product molding. When the bend deformation is large, it does not come into complete contact when being assembled with other parts, which leads to connector contact intensity not being properly maintained. In result, the main role of the connector, which is to transmit electric signals, cannot be performed. In order to address this problem, this study conducted bend deformation cause analysis through bend deformation analysis to predict and prevent bend deformation of housings and wafers, which are injection molded products of pressure welded connectors that are normally applied in compact mobile and display products. Bend deformation analysis was carried out by checking the charging time, pressure distribution and temperature distribution through wire to board connector wafer and housing injection molding analysis. Based on the results of the bend deformation analysis results, the cause of the bend deformation was analyzed through deformation resulting from disproportional cooling, deformation resulting from disproportional contraction, and deformation resulting from ingredient orientation. In result, it was judged that the effects for bend deformation were biggest due to disproportional contraction for both the pressure welded connector wafer and housing.

Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method (가열냉각방법에 의한 마그네슘합금의 판재성형성 개선)

  • Kang, Dae-Min;Manabe, Ken-ich
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.607-612
    • /
    • 2005
  • In this paper, warm deep drawing process with local heating and cooling technique was attempted to improve the formability of AZ31 magnesium alloy which is impossibly to form by conventional methods at room temperature by finite element method and experiment. For FE analysis, in first model with considering heat transfer, both die and blankholder were heated to 573K while the punch was kept at room temperature by cooling water. Also distribution of thickness and von Mises stress at room temperature and 498k for warm deep drawing were compared by FEM. Uniaxial tension tests at elevated temperature were done in order to obtain the temperature dependence of material constant under temperature of $293K\~573K$ and cross head velocity of $5\~500mm/min$. The phenomenological model for warm deep drawing process in this work was based on the hardening law and power law strain rate dependency. Deep drawing experiment were conducted at temperatures of room temperature, 373K, 423K, 473K, 498K, 523K, and 573K for the blank and deep drawing tools(holder and die) and at a punch speed of 10mm/min.

Study on Multi-point Dieless Forming Technology Based on Numerical and Experimental Approach (수치 및 실험적 접근을 통한 다점무금형성형기술 연구)

  • Heo, S.C.;Seo, Y.H.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.220-223
    • /
    • 2008
  • Large curved plate blocks are widely used to construct hull structure in shipbuilding industry. Most curved plates are manufactured by using manual method called as line heating that use deformation caused by residual stress after local heating along a line which is perpendicular to the curvature direction. However, its working environment is poor and its formability is totally dependent on an experienced technician. In view of that, multi-point dieless forming (MDF) technology that use reconfigurable punch arrays instead of one piece die is proposed in this study. The MDF process is based on a concept of equivalent die surface made by numbers of punches which has round tip at the end of it. In this study, numerical simulation for common curvature type such as saddle shape was carried out. In addition, experiments in the plate forming process were also conducted to compare with the numerical results in view of final configuration. Consequently, it was noted that the proposed dieless forming method has considerable feasibility to substitute the new process for conventional manual method.

  • PDF

Forming Simulation and Experiment for Progressive Fabrication Process of Inner Fin in Heat Exchanger

  • Ji, Dong-Hyeok;Jung, Dae-Han;Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.405-413
    • /
    • 2019
  • In this study, a progressive process was performed to fabricate the inner fin of a high-efficiency heat exchanger. A forming simulation was also carried out on the concavo-convex of the inner fin, forming a simulation based on elastic-plastic finite element method. The forming analysis where the speed of the press descended and ascended was set to five seconds showed that the effective stress was at a maximum of about 69 MPa in the curved portion where the bending occurred. Therefore, the die was designed based on the simulation results, and the inner fin die was installed on the 400-ton capacity press. After that, the inner fin fabrication experiment was conducted under the same condition as the simulation. Crack was not found from the curved portion of the concavo-convex of the inner fin. The profile of the concavo-convex of the prepared inner fin measured 6.7~6.8 mm in depth, 2.65~2.7 mm in width, and 0.3 mm in thickness.

A Sudy on the Cold Forging of Spur Gears form Hollow Cylindrical Billets (중공소재에 의한 스퍼어기어의 냉간단조에 관한 연구)

  • Choi, J.C.;Kim, C.H.;Hur, K.D.;Choi, Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.63-72
    • /
    • 1995
  • Closed-die forging of spur gears with hollow cylindrical billet has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduced to represent the forging die profile. In the analysis, the deformation region has been divided into nine zones. A constant frictional stress has been assumed on the contacting surfaces. Utilizing the formulated velocity field, numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth and friction factor, on the forging of spur gears. Hardness and accuracy of forged gears are measured. The following results have been obtained: (1) It is verified that an axisymmetric deformation zone exists between root circle and center of gear through forged gears. (2) The average relative forging pressure is predominantly dependent on the number of teeth and increases near the final filling stage as the addendum modification coefficient increases. (3) Close agreement was found between the predicted values of forging load and those obtained from experimental results.

  • PDF

Damage Analysis of Train Rail Fishplate (전동차 선로 이음매 판의 파손 해석)

  • Seo-Hyun Yun;Byoung-Chul Choi;Ki-Hang Shin;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.341-347
    • /
    • 2023
  • The subway is one of the most common and important means of transportation in modern society. In order to use the subway safely, tracks are necessary, but trains are prone to derailment and collisions. In order for the train to run safely on the track, the fishplate that connects the line connection is used. The damaged railway was a fishplate for connecting subway lines used for 11 years, and damage analysis and countermeasures were presented. Beach marks were observed on both fracture surfaces, and striations appeared at the range of crack propagation. The damaged part is Cr carbide, which has a higher hardness than the base metal, and is judged to be embrittled and destroyed by fatigue. The SM50C fishplate was subjected to a cyclic stress of about 59% of the upper limit of tensile-compression fatigue limit, but inclusions were the cause of failure. In order to prevent fatigue failure of the SM50C steel fishplate, the occurrence of inclusions should be minimized and processed to have a homogeneous structure when manufacturing the fishplate. In addition, compressive residual stress is given through surface modification such as peening to control crack generation. It is necessary to minimize the change in shape that can become a stress concentration part along with accurate fastening of the bolt, and to design the stress distribution to be as uniform as possible.

Finite Element Analysis for the Body-making Process of Steel D&I Can (Steel D&I Can 몸체성형을 위한 FEM 해석)

  • Jung, S.W.;Jung, C.K.;Nam, J.B.;Jin, Y.S.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.459-464
    • /
    • 2001
  • The main object of this study is to develop a reliable FEM simulation technique for the analysis of Steel D&I Can bodymaking process using ABAQUS software. The body making process includes drawing, redrawing, 3 step ironing, doming. The newly developed FEM code in this research is based on the previous research achievement of POSCO for the drawing, redrawing and ironing process. The analysis is performed using two dimensional axisymmetric elements to analyze the punch force, the height of can, the distribution of residual stress and strain. The effect of blank thickness, gap of ironing die is also analyzed.

  • PDF

Optimum Design of Moving Carrier for Minimizing Deflection in Al5083 Thick Plate (대면적 알루미늄 후판의 수평 이송을 위한 캐리어 최적설계)

  • Jeon, H.W.;Yoon, J.H.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.389-393
    • /
    • 2013
  • One of the most efficient designs for manufacturing LNG tank is the Moss spherical type because it has been validated through precise analyses with respect to reliability and construction safety by stress analysis. The Moss spherical tank is assembled with hundreds of Al thick plate patches that are deformed to curved shape at elevated temperature and welded together. It is essential to evaluate the amount of deflection in the Al5083 thick plate when the patch is transferred from the heating chamber to the forming die since the patch has a length of 12,000 mm and a thickness of 60 mm. Based on FE analysis results, a design procedure for minimizing deflection in Al5083 thick plate during transfer using a moving carrier is demonstrated in this paper.

Design of flexure hinge to reduce lateral force of laser assisted thermo-compression bonding system (레이저 열-압착 본딩 시스템의 Lateral Force 감소를 위한 유연 힌지의 설계)

  • Lee, Dong-Won;Ha, Seok-Jae;Park, Jeong-Yeon;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.23-30
    • /
    • 2020
  • Laser Assisted Thermo-Compression Bonding (LATCB) has been proposed to improve the "chip tilt due to the difference in solder bump height" that occurs during the conventional semiconductor chip bonding process. The bonding module of the LATCB system has used a piezoelectric actuator to control the inclination of the compression jig on a micro scale, and the piezoelectric actuator has been directly coupled to the compression jig to minimize the assembly tolerance of the compression jig. However, this structure generates a lateral force in the piezoelectric actuator when the compression jig is tilted, and the stacked piezoelectric element vulnerable to the lateral force has a risk of failure. In this paper, the optimal design of the flexure hinge was performed to minimize the lateral force generated in the piezoelectric actuator when the compression jig is tilted by using the displacement difference of the piezoelectric actuator in the bonding module for LATCB. The design variables of the flexure hinge were defined as the hinge height, the minimum diameter, and the notch radius. And the effect of the change of each variable on the stress generated in the flexible hinge and the lateral force acting on the piezoelectric actuator was analyzed. Also, optimization was carried out using commercial structural analysis software. As a result, when the displacement difference between the piezoelectric actuators is the maximum (90um), the maximum stress generated in the flexible hinge is 11.5% of the elastic limit of the hinge material, and the lateral force acting on the piezoelectric actuator is less than 1N.