• Title/Summary/Keyword: Die Steel

Search Result 444, Processing Time 0.022 seconds

Analytical evaluation and study on the springback according to the cross sectional form of 1.2GPa ultra high strength steel plate (1.2GPa급 초고강도강판의 단면 형태에 따른 스프링백에 관한 해석적 평가 및 연구)

  • Lee, Dong-Hwan;Han, Seong-Ryeol;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.17-22
    • /
    • 2019
  • Currently, studies on weight reduction and fuel efficiency increase are the most important topics in the automotive industry and many studies are under way. Among them, weight reduction is the best way to raise fuel efficiency and solve environmental pollution and resource depletion. Materials such as aluminum, magnesium and carbon curing materials can be found in lightweight materials. Among these, research on improvement of bonding technology and manufacturing method of materials and improvement of material properties through study of ultrahigh strength steel sheet is expected to be the biggest part of material weight reduction. As the strength of the ultra hight strength steel sheet increases during forming, it is difficult to obtain the dimensional accuracy as the elastic restoring force increases compared to the hardness or high strength steel sheet. It is known that the spring back phenomenon is affected by various factors depending on the raw material and processing process. We have conducted analytical evaluations and studies to analyze the springback that occurs according to the cross-sectional shape of the ultra high tensile steel sheet.

Design of drawing process of 9Ni-4Co-0.3C steel to make a large pressure vessel (대형 압력용기 제작을 위한 9Ni-4Co-0.3C 강의 드로잉공정 설계에 관한 연구)

  • Hong Jin Tae;Lee Seok-Ryul;Kim Kyung Jin;Yang Dong Yol;Lee Kyung Hun;Choi Moon Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.93-99
    • /
    • 2005
  • In this work, computer-aided process design is carried out to develop an optimal preform of a pressure vessel. Knowledge-based rules are employed to design the preform, and they are formulated using the handbooks of plasticity theories. In the FE-analysis, a commercial finite element code, ABAQUS was employed. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed fur various combinations of die design parameters. The length of the land of die, the clearance between punch and die and the clearance between the blank holder and die are optimized to minimize the forming load. The results of the simulations are verified with the experiments which are scaled down to one tenth of the actual size.

Analysis of Copper clad steel wire in the drawing process using FE method (유한요소 해석을 이용한 동피복 복합선재의 인발 공정 해석)

  • Kim H.S.;Jo H.;Jo H. H.;Kim D.K.;Kim B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.27-30
    • /
    • 2004
  • Clad wire , which has the advantages of the high strength of a steel core and the electro-conductivity, corrosion resistance of a copper layer, is widely being used the telecommunications, electric-electronic and military technology industries, among others. It is important to obtain uniform coated rate when producing clad wires. Clad wire drawing process can be influenced on damage and coated rate of core and sleeve by process variables as semi-die angle and reduction in area. Therefore, in this study, the finite-element results established in previous study is used to analyze the effect of the various forming parameters, which included the semi-die angle, reduction in area etc. The coated rate will be predicted with observation copper coated rate variation according to total reduction in area and the optimal pass schedule will be set up through proper reduction in area and semi-die angle variation.

  • PDF

Development of Electrode Guide of Super-drill EDM and Electrical Discharge Machining of Small Hole for High Precision Semiconductor Die (초정밀 반도체 금형 제작을 위한 슈퍼드릴 방전가공기 전극가이드 개발과 미세홀 방전가공)

  • Park, Chan-Hae;Kim, Jong-Up;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.32-38
    • /
    • 2005
  • Electrical discharge machining is the method of using thermal energy by electrical discharge. Generally, if the material of workpiece has conductivity even though very hard materials and complicated shape which are difficult to cut such as quenching steel, cemented carbide, diamond and conductive ceramics, the EDM process is favorable one of possible machining processes. But, the process is necessarily required of finish cut and heat treatment because of slow cutting speed, no mirror surface, brittleness and crack due to the residual stress for manufactured goods. In this experimental thesis, the super EDM drilling was developed for high precision semiconductor die steel and for minimization of leadframe width. It was possible to development of EDM drilling machine for high precision semiconductor die with the electrode guide and its modelling and stress analysis. The development of electrode with the copper pipe type was conducted to drill the hole from the diameter of 0.1mm to 3.0mm with the error of from 0.02mm to 0.12mm. From the SEM and EDX analysis, the entrance of the EDM drill was found the resolidification of not only the component of tungsten but also the component of copper.

  • PDF

Comparison of the Quenching Method in Hot Press Forming of Boron Steel (보론강 카메라 케이스 고온성형 공정 비교)

  • Seo, O.S.;Kim, H.Y.;Hong, S.M.;Ryu, S.Y.;Yoon, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.185-189
    • /
    • 2009
  • Recently, ultra high strength products can be manufactured by the hot press forming process of Boron steel in automotive and electronics industries. In order to get high strength, the hot press forming should be accompanied by quenching process inducing phase transformation. There are several types of the hot press forming processes according to the quenching method, water quenching and die quenching, etc. In the study, the process was numerically and physically simulated to compare the two types of quenching processes, and then the strength, hardness and dimensions of the products were compared with try-outs.

Development of a Finisher Design System for Axisymmetic Hot Steel Forging (축대칭 열간 강단조의 피니셔 설계 시스템 개발)

  • Kim, Dae-Young;Park, Jong-Jin
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.291-297
    • /
    • 1998
  • A forging product in general is made through buster blocker and finisher processes. The dies used in these processes are designed by experienced forging engineers. In the present study an expert system is developed for the finisher die design of axisymmetric hot steel forging. It is a rule based system written in Fortran and AutoLISp operating on a personal computer. In this paper major rules consid-ered in the system are summarized and the capabilities of the system are examined through several examples.

  • PDF

Development of a Blocker Design System for Axisymmetric Hot Steel Forging (축대칭 열간 강단조의 블락커 설계 시스템 개발)

  • Kim, Dae-Young;Park, Jong-Jin
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.298-305
    • /
    • 1998
  • In hot forging the blocker is a transient shape between the buster and the finisher, In general as the finisher shape becomes complicated the blocker design becomes quite difficult. In the present study an expert system is developed for the blocker die design of axisymmetric hot steel forging. It is a rule based system written in Fortran and AutoLISP operating on a personal computer. In this paper the major rules considered in the system are summarized and several blockers designed by the system are discussed with results of rigid viscoplastic finite element analysis.

  • PDF

Prediction of the wire temperature in a high carbon steel drawing process (고탄소강의 다단 인발 공정에서의 선재의 온도 예측)

  • Kim, Young-Sik;Kim, Yong-Chul;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.821-825
    • /
    • 2000
  • Drawing is one of the oldest metal forming operations and has major industrial significance. This process allows excellent surface finishes and closely controlled dimensions to be obtained in long products that have constant cross sections. In drawing of the high carbon steel wire, exit speeds of several hundreds meters per minute are very common. Drawing is usually conducted at room temperature using a number of passes or reductions through consequently located dies. In multi-stage drawing process like this, temperature rise in each pass affects the mechanical properties of final product such as bend, twist and tensile strength. In this paper, therefore, to estimate the wire temperature in multi-stage wire drawing process, wire temperature prediction method was mathematically proposed. Using this method, temperature rise at deformation zone as well as temperature drop between die exit and the next die inlet were calculated.

  • PDF

A Study on the forming Process of Automobile Center floor Side Member using Ultra High Strength Steel of 980MPa (980MPa급 초고강도강판을 이용한 센터 플로 사이드 멤버의 성형공정 연구)

  • Lim, H.T.;Suh, C.H.;Youn, K.T.;Ro, H.C.;Shin, H.D.;Kwak, Y.S.;Park, C.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.203-206
    • /
    • 2009
  • Ultra high strength steels(UHSS) are widely used to fill the needs of lightweight part for automobile, and the control of springback is very important (actor in sheet metal forming using UHSS. In this study, to lighten the center floor side member(CFSM) which is normally manufactured using $600{\sim}800MPa$ steel sheet, new design of the manufacturing process for CFSM using APFC980 has been proposed. To accomplish this goal, the influence of process variables such as die corner radius and die wall angle on the springback were investigated using FE-analysis. In order to insure the validity of FE-analysis, the springback results of FE-analysis was verified with prototype product.

  • PDF

Multi-objective Optimization to Reduce Wrinkle & Thinning in Sheet Metal Forming of Ultra High Strength Steel (1.2GPa) (1.2GPa 강판의 판재성형에서 주름 및 성형성 향상을 위한 다중 목적함수 최적 설계)

  • Lee, Y.S.;Kwon, S.H.;Kim, H.L.;Kim, S.W.;Jung, C.Y.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.295-300
    • /
    • 2016
  • Recently, Ultra High Strength Steel (UHSS) sheet metal has been widely used to improve lightweight structures in the automobile industry. Because UHSS sheets have high strength but low elongation, it is difficult to control winkle and thinning for complex shaped products. The draw beads on die surface were introduced in this study to reduce wrinkle and thinning. The positions and strength values of draw beads were selected as design variables and optimized using finite element analysis. The beads positions and strength of a mold for B-pillar part were designed with the proposed optimization method. The accuracy of die design from optimization was verified by comparing with the results from 3-D scanned geometry.