• Title/Summary/Keyword: Die Shoulder Radius

Search Result 9, Processing Time 0.02 seconds

Influence of Die Shoulder Radius and Punch to Die Clearance for Multistage Deep Drawing of Complex Cylindrical Shell (원통형 용기의 다단계 디프드로잉에 대한 다이 곡률반경 및 틈새의 영향)

  • 김두환
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.262-268
    • /
    • 1999
  • This paper reviews the rules for optimizing die design and the process variables such as die shoulder radius and punch to die clearance, which are important factors in drawing the sheet metal without failures during deep drawing. To find the optimum conditions for improving deep drawability, a series of the experiments are performed, and the wall thinning and thickening variations are investigated in each process of deep drawing for a complex cylindrical shell. From the results of this proposed experiment, the optimum values of process variables are examined and discussed, and the usefulness of the present suggestion is shown.

  • PDF

A Study on the Formability Factors of Axisymmetric Multi-Stage Deep Drawing Processes (축대칭 다단계 딥드로잉 공정의 성형인자에 대한 연구)

  • 여은구;조선형;이용신
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.6-11
    • /
    • 2002
  • Formability in deep drawing process depends not only on a drawability of workpiece material but also on process conditions such as die punch comer radius, lubricant conditions, punch-die clearance etc. For instance, bending resistance should be reduced by increasing die round appropriately, drawing load should be minimized by improving the lubricant condition between die and material, and blanking load should be increased by selecting a pertinent punch round and by augmenting the friction resistance in punch. In this study, a multi-stage deep drawing process is analyzed using ABAQUS. The effects of formability factors, such as die shoulder radius, punch-die clearance and friction coefficient are investigated, and the results are also discussed in detail.

A Study on the Formability Factors of Axisymmetric Multi-Stage Deep Drawing Processes (축대칭 다단계 딥드로잉 공정의 성형인자에 대한 연구)

  • 여은구;조선형;이용신
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.280-285
    • /
    • 2001
  • A good drawability of material itself is required. To improve the formability in deep drawing process. Besides that bending resistance should be reduced by increasing die round appropriately, drawing load should be minimized by improving the lubricant condition between die and material, and breaking load should be increased by selecting a pertinent punch round and by augmenting the friction resistance in Punch. In this study, a multi-stage deep drawing process is analyzed using ABAQUS, the effects of formability factors. Such as die shoulder radius, punch-die clearance and friction coefficient are investigated.

  • PDF

Development of Local Modification Functions for Edge Rounds on Shell Meshes (쉘 메쉬 모델의 모서리 라운드 탐색 및 수정 기능)

  • 이원경;이상헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.624-627
    • /
    • 2000
  • This paper describes a local modification capability on shell meshes, which can change a 'constant or variable radius of rounding for the s h q edges of the stamping die shoulder in the mesh. The algorithm consists of the followin_e three main steps; (1) the rounding area for sharp edges of a die shoulder are detected from the given shell mesh, (2) a rolling-ball surface with a given constant or variable radius is generated, which is contacti% with two incident face groups of the sharp edges, (3) the rounding area of the mesh is cut off, and a new mesh for the rolling-ball surface is generated and implanted into the gap. Owing to this rounding modification capability, CAE engineers can examine various cases based on the existing dies by scanning them to form polyhedral models and then changing radii of die shoulders for stamping process simulation.

  • PDF

Evaluation of the Formability of Warm Forming Simulation of Magnesium Alloy Sheet Using FLD (마그네슘 합금 판재의 온간 성형 해석에서 FLD를 이용한 성형성 평가)

  • Lee, M.H.;Kim, K.K.;Kim, H.Y.;Oh, S.I.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.501-506
    • /
    • 2008
  • In this study, a forming magnesium alloy circular cup was simulated accounting for heat transfer at elevated temperatures. In order to predict the failure of magnesium alloy sheet during simulation, the forming limit diagram, which is used in sheet metal forming analysis to determine the criterion for failure, was investigated. For the failure prediction in the simulation accounting for heat transfer, the forming limit diagram for a temperature the same as the temperature of the blank element was used. The result of the simulation showed that the drawn depth increases with the increase of the die-holder temperature, and is in accord with the experimental results above the die-holder temperature of $150^{\circ}C$. The forming limit diagram provided a good guide for the failure prediction of warm forming simulation accounting for heat transfer. In addition, the effect of the tool shoulder radius on the drawn depth at various tool temperatures is verified using the simulation conditions which agreed with the experimental results.

Multi-stage Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio by an Explicit Elasto-Plastic Finite Element Method (외연적 유한요소법을 이용한 세장비가 큰 타원형 컵 성형공정의 다단계 해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.313-319
    • /
    • 2000
  • Finite element analysis is carried out for simulation of the multi-stage elliptic cup drawing process with the large aspect ratio. The analysis incorporates with shell elements for an elasto-plastic finite element method with the explicit time integration scheme. For the simulation, LS-DYNA3D is utilized for its wide capability of solving forming problems. The simulation result shows that the non-uniform drawing ratio at the elliptic cross section ad the small shoulder radius cause failure such as tearing and wrinkling. The result suggests the guideline to modify the tool shape for prevention of the failure during the drawing process.

  • PDF

Investigation of Deep Drawability and Product Qualities of Ultra Thin Beryllium Copper Sheet Metal (베릴륨동 극박판의 드로잉 성형성과 품질특성 연구)

  • Park, S.S.;Hwang, K.B.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • The present study is focused on the deep drawability and product qualities of ultra thin beryllium copper sheet metal. The goal of this research is to investigate the limit drawing ratio in deep drawing of ultra thin beryllium copper metal. For the experiment, beryllium copper(C1720, $50{\mu}m$ in thickness) is used. Tensile test are also carried out to find out the material properties. Deep drawing experiments are carried out in Universal Testing Machine(UTM) to obtain limit drawing ratio. Deep drawing tests are carried out for various specimen sizes. Teflon film is used as a lubricant and constant blank holding force is imposed. Sheet thickness and surface hardness are measured along radial direction after deep drawing. Thickness is measured using optical microscope. For beryllium copper(C1720), the maximum LDR of 2.4 is obtained when the die shoulder radius is 20 or 30 times of sheet thickness.

Simulation-based Prediction Model of Draw-bead Restraining Force and Its Application to Sheet Metal Forming Process (유한요소법을 이용한 드로우비드 저항력 예측모델 개발 및 성형공정에의 적용)

  • Bae, G.H.;Song, J.H.;Huh, H.;Kim, S.H.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.55-60
    • /
    • 2006
  • Draw-bead is applied to control the material flow in a stamping process and improve the product quality by controlling the draw-bead restraining force (DBRF). Actual die design depends mostly on the trial-and-error method without calculating the optimum DBRF. Die design with the predicted value of DBRF can be utilized at the tryout stage effectively reducing the cost of the product development. For the prediction of DBRF, a simulation-based prediction model of the circular draw-bead is developed using the Box-Behnken design with selected shape parameters such as the bead height, the shoulder radius and the sheet thickness. The value of DBRF obtained from each design case by analysis is approximated by a second order regression equation. This equation can be utilized to the calculation of the restraining force and the determination of the draw-bead shape as a prediction model. For the evaluation of the prediction model, the optimum design of DBRF in sheet metal forming is carried out using response surface methodology. The suitable type of the draw-bead is suggested based on the optimum values of DBRF. The prediction model of the circular draw-bead proposes the design method of the draw-bead shape. The present procedure provides a guideline in the tool design stage for sheet metal forming to reduce the cost of the product development.

  • PDF

A Experimental Study of Cup forming by Stretch-Drawing Process (인장드로잉법에 의한 원통성형에 관한 실험적 연구)

  • 김영수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.123-128
    • /
    • 2000
  • Fundamental and informative data of axi-symmetric stretch-drawing of several sheetmetals with thicknesses of 0.7-1.0mm are presented both for single and double operations. Very small radius is applied to the die profile (or-shoulder) ion all operations. to induce wall-thinning by the effect of bending-under-tension from which the name 'stretch-drawing' comes. It is clearly demonstrated that deeper cups could be formed by single and double stretch-drawings from smaller circular blanks due to such wall-thinning action than in the usual deep-drawing of larger blanks, From this fact it is emphasized that the deep-drawability of a sheet metal is not evaluated simply by the conventional L.D.R (limiting drawing ratio) but the depth of the drawn cup should also be taken into account./ Many experimental data about various metals and thicknesses given in this paper offer a valuable information in this process for more general use which recommends to replace the conventional deep-drawing process by the stretch-drawing process both for single and double operations. In the single stretch-drawing it is also confirmed that a deeper cup can be produced by raising the blank-holding force at later stage of operation.

  • PDF