• Title/Summary/Keyword: Die Roughness

Search Result 178, Processing Time 0.101 seconds

Evaluation of Machining Characteristics through Wire-Cut EDM of Brass and SKD 11 (황동과 금형강의 와이어 컷 방전가공을 통한 가공특성 평가)

  • 김정석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.130-137
    • /
    • 1997
  • The demand for wire-cut EDM is increasing rapidly in the die and tool making industry. In this study machining characteristics such as machining rate, surface roughness, hand drum form and hardness of machined material are investigated experimentally under the conditions varing pulse on time, pulse off time, peak voltage, wire tension after fixing other conditions in SKD 11 and brass and brass workpiece. It was found that various operating conditions had significant influences on machining characteristics. But the hardness of workpiece was uneffected by operating conditions. Also it was obtained experimentally that brass workpeice had better machinability than SKD 11 one.dition according to the current(Ip) in an electric spark machine : 1) Electrode is utilized Cu and Graphite. 2) Work piece is used the material of carbon steel. The condition of experiment is : 1) Current is varied 0.7(A) to 50(A) and the time of electric discharging to work piece in each time is 30(min) to 60(min). 2) After the upper side of work piece was measured in radius(5$\mu$m) of stylus analyzed the surface roughness to ade the table and graph of Rmax by yielding data. 3) Electro wear ratio is : \circled1Cooper was measured ex-machining and post-machining by the electronic balance. \circled2The ex-machining of graphite measured by it, the post-machining was found the data from volume $\times$specific gravity and analyzed to made its table and graph on ground the data. 4) In order to keep the accuracy of voltage affected to the work piece was equipped with the A.V. R and the memory scope was sticked to the electric spark machine. 5) In order to preserve the precision of current, to get rid of the noise occured by internal resistance of electric spark machine and to force injecting for the discharge fluid , it made the fixed table for a work piece to minimize the work error by means of one's failure during the electric discharging.

  • PDF

High-speed Machining Technology using CNC Machining Center Equipped with Attachment Type High-Speed Spindle (CNC 공작기계 장착형 고속스핀들을 이용한 고속가공 실용화 기술)

  • Lee, Yong-Chul;Kwak, Tae-Soo;Kim, Gyung-Nyun;Lee, Jong-Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.152-158
    • /
    • 2012
  • A newly developed attachment type high-speed spindle can be easily attached to the conventional CNC machining center to allow high-speed machining with low investment costs. This study has focused on the application of a conventional CNC machining center equipped with an attachment type high-speed spindle. A specimen of plastic mold material has been machined to compare the cutting effectiveness of the high-speed machining center and the conventional machining center with the attachment type high-speed spindle respectively. The rotational accuracy of the spindles are measured by a transmission optic measurement system and the surface roughness of the workpiece in accordance with revolution speed(rpm) of the spindle are investigated respectively. As the experimental results, it was shown that the surface roughness of the machined workpiece was $3.42{\mu}mR_{max}$, $0.46{\mu}mR_a$ in the case of attachment type spindle and $1.81{\mu}mR_{max}$, $0.275{\mu}mR_a$ in the case of the high-speed machining center. Moreover, the mean rotational accuracy was $7.57{\mu}m$ in the case of the attachment type spindle and $7.39{\mu}m$ in the case of the high-speed machining center.

Laser Processing for Manufacturing Styrofoam Pattern (주물용 스티로폼 목형 제작을 위한 레이저 가공 공정 개발)

  • 강경호;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1085-1088
    • /
    • 2001
  • The process of styrofoam pattern that has been used for material of press die pattern depends chiefly on handwork. Laser manufacturing system developed to increase precision and efficiency of process that is also able to convert the design easily. Applying the RP(rapid prototyping) concept reversely, the unnecessary part of section is vapored away by heat source of laser beam after converting 3-D CAD model into cross-sectional shape information. Laser beam is line-scanned in plane specimens to measure the depth and width of cut, surface roughness, cross-sectional shape as converting laser power, scanning speed, cutting gas pressure. With these basic data, plane surface, inclined surface, hole, outer contour trimming process is experimented and optimum condition are obtained. In plane and inclined surface experiments, 15W laser power and 50mm/s scanning speed make superior processing property and 30W, 10mm/s make processing efficiency increase in trimming process. With these results, simple patterns were manufactured and the possibility of applying laser manufacturing system to styrofoam pattern was convinced.

  • PDF

Mechanical Properties and Electrical Discharge Machinability of $\beta$-Silon-TiB2 Composites

  • Park, Yong-Kap;Kim, Jun-Tae;Baik, Yong-Hyuck
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 1999
  • The influences of TiB2 additions to the β-sialon on mechanical propeties and electrical discharge machinability were investigated. Samples were prepared by adding 15, 30 and 45 vol.% TiB2 particles as a second phase to a β-sialon matrix. The β-sialon-TiB2 composites were sintered by hot pressing in a nitrogen atmosphere at 1800℃ with pressure of 30 MPa. The fracture toughness of the composites was increased with TiB2 content except 45 vol.% TiB2 composite. The crack propagation and crack deflection were observed with a SEM for etched samples after vicker's indentation. The composites containing more than 30 vol.% TiB3 had resistivity lower than 10-3 Ω㎝. The electrical discharge machining (EDM) of composited was conducted with two kind of machines such as die-sinker and wire cutter. The machinability was evaluated with the cutting rate surface roughness after machining.

  • PDF

Improvements of Electro Discharge Machining Process using Side flushing Devices (방전가공시 측면 플래싱 장치를 활용한 가공성 향상)

  • Shin, Seung-Hwan;Park, Keun;Maeng, Hee-Young
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.334-343
    • /
    • 2003
  • The discharge gap clearly is to order and to promote the improvement of processing feature of die-sinking electro discharge machining(EDM). If creation carbon, which generated by Pyrolysis of EDM oil and processing pace power which is generated in between an electrode and a workpiece, are overproduced, they will lower the processing speed and roughness of the surface. Therefore, it is gone through an experiment and the flow analysis of EDM oil in order to improve the treatment of processing chips, which is an important problem by contriving a new flushing method. The condition of an electric discharge is not considered to be a progressing of processing. It is assumed that the flow of processing fluid is equal to the flow of processing chip, which is remaining in the discharge gap, and thus, analyzing then comparing with the data of the experiment and investigate its correlation.

  • PDF

A Study on optical glass polishing using Fixed Abrasive Pad (고정입자패드를 이용한 광학 유리 폴리싱에 관한 연구)

  • 최재영;김초윤;박재홍;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.78-81
    • /
    • 2003
  • Polishing Processes are widely used in the glass, optical, die and semiconductor industry and are conventionally carried out using abrasive slurry and a polishing pad. But abrasive slurry process has a weak point that is high cost of handling of used slurry and hard controllability of slurry. Recently, some researches have attempted to solve these problems and one method is the development of a fixed abrasive pad. FAP has a couple of advantages including clean environment, lower CoC, easy controllability and higher form accuracy. But FAP also has a weak point that is need of dressing because of glazing and loading. The paper introduces the basic concept and fabrication technique of FAP using hydrophilic polymers with swelling characteristics in water and explains the self-conditioning phenomenon. Experimental results demonstrate to achieve nano surface roughness of soda lime glass for optical application

  • PDF

A study of frictional characteristics of galvanized sheet steels for automobiles (자동차용 표면처리강판의 마찰특성에 관한 연구)

  • 김영석;남재복;최원집
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1474-1486
    • /
    • 1990
  • The frictional characteristics of galvanized sheet steels(GA, EG, EGF, EGN) for automobiles were studied and compared with that of cold rolled sheet steel. A draw bead tester which simulates metal flow through a draw bead in stamping die face was used to measure coefficients of friction of galvanized sheet steels for four kinds of lubricants. Stamping formability of galvanized sheet steels for quarter outer panel was examined. The results show that stamping formability and friction characteristics were mainly influenced by the nature of zinc coating, surface roughness and micro hardness of coated layer, and proved to be very sensitive to the lubricant used.

역극성시 금속수지복합체와 세라믹수지복합체의 형상방전가공 특성

  • 우정윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.52-57
    • /
    • 1996
  • Conductive Ceramic Matrix Composite(CMC) of TIC/Al2O3 and Metal Matrix Composite (MMC) of SiC/Al were experienced by the die sinking Electrical Discharge Machining(EDM) for different current and duty factor according to negative polarity. Inthis experimental study Material Removal Rate(MRR) maximum surface roughness four point bending stress distribution and Scanning Electron Microscopy(SEM) Photographs were analysed. the higher MRR was obtained for CMC than MMC but slowly decreased around duty factor of 0.67 for MMC and better surface morphology was found CMC than MMC. The SEM photographs of discharge traces for CMC showe uniform shape about 100 to 200${\mu}{\textrm}{m}$ in diameter but MMC showed irregular shape.

  • PDF

A Study on Formed Tool to Machine Milli-structure Mold (미세구조물 금형가공을 위한 총형공구에 관한 연구)

  • Lee, Hi-Koan;Kim, Yeun-Sul;Kim, Do-Hyung;Roh, Sang-Heup;Yang, Gyun-Eui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.5-10
    • /
    • 2003
  • This paper presents the formed tool to machine a milli-structure mold. The formed tool is used to machine the geometrical shape of bearing rubber seal for precision machining. The bearing rubber seal has milli-sized complex geometry. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining die of the bearing seal. In this paper, it is performed to investigate properties of the formed tool; tool wear, cutting force and machined surface roughness. Tool wear increases rapidly with clearance angle Increase. Thus, the dimension accuracy is affected by the clearance angle.

  • PDF

Optimum Machining Condition of Die Steel In The Oil-mist Condition (오일미스트 조건에서의 금형강의 최적절삭조건)

  • Kim Sang-Min;Kim Joon-Hyun;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • The purposes of using cutting fluid during cutting have been cooling, lubricating, chip washing and anti-corroding. However, the present manufacturing industry restricts the use of cutting fluid because cutting fluid contains poisonous substances which are harmful to the human body. Therefore environmentally conscious machining and technology have more important position in machining process because cutting fluids have significant influence on the environment in milling process. In this study, environmentally conscious machining can be obtained by the way of selecting the optimum machinig conditon using the design of experiment. Cutting using oil-mist showed better cutting characteristics than dry, air and fluid cutting with respect to by cutting force, tool wear and surface roughness. Also, the optimum machining condition for cutting using oil-mist could be selected through Taguchi method.