• 제목/요약/키워드: Die Casting

검색결과 391건 처리시간 0.022초

저압주조 알루미늄 휠 생산성 향상 및 품질개선에 관한 연구 (Study on the improvement of productivity and quality on the Aluminum wheel by low pressure die casting)

  • 이영철;최정길
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2001년도 춘계학술대회 발표논문집
    • /
    • pp.224-228
    • /
    • 2001
  • 자동차용 Al Wheel의 반복 금형 주조 공정에 있어서의 적정 냉각조건 확립 및 수축공 등의 주조결함을 제어하기 위하여 3차원 응고, 유동, 응력 해석 프로그램 연동 기술과 자동 금형온도 조절장치를 실제 현장에 적용하여 생산되는 Al Wheel 제품의 최적 주조조건 및 냉각조건을 확립하였다. 주조과정 중의 금형의 온도 변화 및 주물의 응고, 유동 거동은 수치해석 결과와 잘 일치하는 경향을 나타내었다. 또한 금형온도 자동 조절 장치를 사용함으로서 금형 작업온도의 가열 및 유지가 정량적으로 제어 가능하며, 제품 품질의 유지 및 Cycle Time 최적화를 이룰 수 있으며 궁극적으로는 금형 수명 연장 및 생산성 향상 등을 이룰 수 있었다.

Al과 스텐레스강의 주조접합을 위한 STS430(Fe-17wt.%Cr)강의 표면처리 특성연구 (A Study on the Surface Characterization of Fe-17wt.%Cr Steel for Cast-bonding of Al and Stainless Steel)

  • 김억수
    • 한국주조공학회지
    • /
    • 제25권3호
    • /
    • pp.134-141
    • /
    • 2005
  • To overcome the undesirable deformation, peeling off and geometrical restrictions which were mainly caused by differences in thermal expansion coefficients during the cladding of aluminum strip and stainless strip, new processing method based on vacuum die casting is designed and implemented in fabricating Al/Fe-17wt%Cr steel(stainless steel). To increase cast-bonding ability, the surface of Fe-17wt%Cr steel is electrochemically etched to have optimum pit size and density. The optimum conditions to generate best pit are as follows: Solution: 1 M $Fecl_{3}$+1 M Nacl, Addition: $CuCl_{2}+HCl$, Current density: 80 $mA/cm^{2}$, Total current: 400 $coulomb/cm^{2}$, AC frequency :60 Hz.

알루미늄 주조용 SKD61 금형강의 표면처리 방법에 따른 특성 평가 (Characteristic Evaluation According to the Surface Treatment Method of SKD61 Mold Steel for Aluminum Casting)

  • 최세원;김철우;김용호;유효상
    • 열처리공학회지
    • /
    • 제34권6호
    • /
    • pp.281-286
    • /
    • 2021
  • Arc ion plating (AIP), laser cladding, and nitriding are methods that can prevent mold damage or repair and create cracks and breakages on the die surface. The dissolution and soldering behavior of coated SKD61 by using arc ion plating, laser cladding, and nitriding was investigated. The structure of the coating was investigated as a function of deposition conditions by X-ray diffraction and the crystallographic orientation was determined using the texture factor. The TiAlN film deposited with AIP showed excellent corrosion resistance in the molten aluminum alloy at 680℃. In this paper, we have detailed the corrosion and mass loss phenomena associated with these steel-cast metal interactions.

Sc 첨가에 따른 Al-6Si-2Cu 합금의 미세조직 개량화 (Effect of Sc Addition on the Microstructure Modification of Al-6Si-2Cu Alloy)

  • 안성빈;김정석
    • 열처리공학회지
    • /
    • 제35권3호
    • /
    • pp.150-158
    • /
    • 2022
  • The effects of scandium addition on the Al-6Si-2Cu Alloy were investigated. The Al-6Si-2Cu-Sc alloy was prepared by gravity die casting process. In this study, scandium was added at 0.2 wt%, 0.4 wt%, 0.8 wt%, and 1.0 wt%. The microstructure of Al-6Si-2Cu-Sc alloy was investigated using Optical Microscope, Field Emission Scanning Electron Microscope, Electron Back Scatter Diffraction, and Transmission Electron microscope. The microstructure of Al-6Si-2Cu alloy with scandium added changed from dendrite structure to equiaxed crystal structure in specimens of 0.4 wt% Sc or more, and coarse needle-shape eutectic Si and β-Al5FeSi phases were segmented and refined. The nanosized Al3Sc intermetallic compound was observed to be uniformly distributed in the modified Al matrix.

자기공명 탐상기술 (MRT)에 의한 비철금속 가공물의 기공 검출 (MRT (Magneto Resonance Testing) Development and Application for Non-ferrous Metal Products Pore's Defect Detection)

  • 서동만;문관훈
    • 한국주조공학회지
    • /
    • 제43권1호
    • /
    • pp.3-10
    • /
    • 2023
  • 본 연구는 다이캐스팅 과정 중 발생될 수 있는 비철금속 가공품 내부의 기공 결함을 검출할 수 있는 기술 개발을 위해 진행되었다. 해당 연구를 통해 제품 내부에 발생 가능한 기공을 사전에 검출하여 불량 생산품의 유통을 사전에 차단하고 나아가 유통된 제품의 파손으로 발생 가능한 손실을 감소시키는데 기여하고자 한다.

펄스자장을 이용한 고이방화 Nd-Fe-B자석의 종축자장성형방법 (Axial Pressing Method Using Pulse Magnetizing Field for the Preparation of Nd-Ee-B Sintered Magnets)

  • 김동환;강병길;장동열;김승호;김상면;장태석
    • 한국자기학회지
    • /
    • 제13권4호
    • /
    • pp.182-186
    • /
    • 2003
  • 펄스자장종축성형법(pulse die press, PDP)을 이용하여 32 wt%RE-67 wt%TM-1 wt%B(RE: 희토류원소, TM: 30천이금속)조성을 갖는 소결자석을 제조함에 있어서 자장성형시 분말의 탭밀도, 성형밀도, 인가자장세기 및 인가방법의 변화에 따라 얻어지는 자석의 배향율과 감자곡선상의 각형성 변화를 조사하였다. 출발합금 제조방법으로서 strip casting process에 의하여 $\alpha$-Fe 편석없이 미세하고 균일한 조직을 갖는 합금 flake가 얻어졌고, 합금 flake를 수소처리한 후 고압가스를 이용한 건식분쇄방법(jet mill)에 의하여 평균입도, 표준편차가 각각 3.65 $\mu\textrm{m}$, 1.39인 미세하고 균일한 입도의 분말로 제조하였다. 제조된 분말은 30-50 kOe치 고펄스자장에 의하여 분말을 배향시키고 동일한 펄스자장을 인가하면서 종축성형을 실시함으로써 배향율을 향상시킬 수 있었다. 결과적으로 32 wt%RE조성의 분말을 이용하여 종전의 자장성형방법인 TDP(transverse die press)와 본 연구에서 제안된 PDP에 의하여 제조된 자석의 최대자기에너지적은 각각 42.0 MGOe 및 44.8 MGOe가 얻어져, PDP가 분말의 배향율과 감자곡선상의 각 형성을 향상시키는데 효과적인 자장성형방법임을 알 수 있었다.

알루미늄 청동의 미세조직과 기계적 성질에 미치는 Fe 및 Si 첨가의 영향 (Effects of Iron and Silicon Additions on the Microstructures and Mechanical Properties of Aluminium Bronze)

  • 김지환;김지태;김진한;박흥일;김성규
    • 한국주조공학회지
    • /
    • 제36권6호
    • /
    • pp.202-207
    • /
    • 2016
  • The effects of Fe and Si additions on the microstructures and mechanical properties of aluminum bronze have been investigated. In a bar-type specimen cast in a die mold, the addition of Fe promoted the dendritic solidification of the ${\alpha}$ phase. The hardness values increased slightly in the Fe-added specimen with heat treatment, while these values was increased significantly in the specimens with Si or with combined additions of Fe and Si. When a centrifugal casting bush with combined addition of Fe and Si was heat treated, the FeSi compound within the matrix was finely dispersed, and was observed to be the origin of cup-cone type conical dimple failure in the tensile fracture surface. The mechanical properties of the heat treated centrifugal casting bushes, whose nominal alloy compositions were (Cu-7.0Al-0.8Fe-3.0Si)wt%, exhibited tensile strength of $703-781N/mm^2$, elongation of 6.6-11.7% and hardness of Hv 222.6-249.2. These high values of strength and elongation were attributed to the strengthening of the matrix due to the combined addition of Fe and Si, and to precipitation of fine the FeSi compound.

0.25-0.65wt% CaO 첨가 AM60B Eco-Mg 다이캐스팅 부품의 상온 및 고온 기계적 특성 (Mechanical Properties of 0.25-0.65wt% CaO added AM60B Eco-Mg Diecastings at room and Elevated Temperatures)

  • 서정호;김세광
    • 한국주조공학회지
    • /
    • 제31권1호
    • /
    • pp.11-17
    • /
    • 2011
  • The effect of CaO addition to AM60B Mg alloy on tensile properties has been investigated, with focus on strength and ductility at room and elevated temperatures. The 0.25-0.65wt% CaO added AM60B Eco-Mg diecastings were prepared by high pressure die casting using Buhler 1,450-ton cold chamber machine without $SF_6$ and $SO_2$ gases. The microstructures and tensile properties of each alloy were tested. The results show that the grains of AM60B are refined and the mechanical properties increase with CaO addition at room temperature. The improvement of strength and ductility is prominent at 0.45-0.55wt% CaO addition. Also, improved mechanical properties are maintained at elevated temperature of $150^{\circ}C$. CaO addition results in $Al_2Ca$ phase formation mostly on the grain boundaries. This phase leads to the refinement of grain structures and improvement of ductility as well as strength. The suppression of ${\beta}-Mg_{17}Al_{12}$ phase as well as the decrease of fracture surface porosity and other casting defects caused by melt cleanliness also contribute to the enhancement of mechanical properties of AM60B Eco-Mg at room and elevated temperature.

적층 방식 3차원 프린팅에 의한 미세유로 칩 제작 공정에서 프린팅 방향 및 적층 두께의 영향에 관한 연구 (Study on Effect of the printing direction and layer thickness for micro-fluidic chip fabrication via SLA 3D printing)

  • 진재호;권다인;오재환;강도현;김관오;윤재성;유영은
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.58-65
    • /
    • 2022
  • Micro-fluidic chip has been fabricated by lithography process on silicon or glass wafer, casting using PDMS, injection molding of thermoplastics or 3D printing, etc. Among these processes, 3D printing can fabricate micro-fluidic chip directly from the design without master or template for fluidic channel fabricated previously. Due to this direct printing, 3D printing provides very fast and economical method for prototyping micro-fluidic chip comparing to conventional fabrication process such as lithography, PDMS casting or injection molding. Although 3D printing is now used more extensively due to this fast and cheap process done automatically by single printing machine, there are some issues on accuracy or surface characteristics, etc. The accuracy of the shape and size of the micro-channel is limited by the resolution of the printing and printing direction or layering direction in case of SLM type of 3D printing using UV curable resin. In this study, the printing direction and thickness of each printing layer are investigated to see the effect on the size, shape and surface of the micro-channel. A set of micro-channels with different size was designed and arrayed orthogonal. Micro-fluidic chips are 3D printed in different directions to the micro-channel, orthogonal, parallel, or skewed. The shape of the cross-section of the micro-channel and the surface of the micro-channel are photographed using optical microscopy. From a series of experiments, an optimal printing direction and process conditions are investigated for 3D printing of micro-fluidic chip.

SLM 방식으로 제작한 도재관 금속하부구조물의 변연 및 내면 적합도 평가 (Evaluation of marginal and internal fit of metal copings fabricated by selective laser melting)

  • 배성령;이하빈;노미준;김지환
    • 대한치과기공학회지
    • /
    • 제45권1호
    • /
    • pp.1-7
    • /
    • 2023
  • Purpose: To evaluate the marginal and internal fit of metal coping fabricated by a metal three-dimensional (3D) printer that uses selective laser melting (SLM). Methods: An extraoral scanner was used to scan a die of the prepared maxillary right first molar, and the coping was designed using computer-aided design software and saved as an stereo lithography (STL) file. Ten specimens were printed with an SLM-type metal 3D printer (SLM group), and 10 more specimens were fabricated by casting the castable patterns output generated by a digital light processing-type resin 3D printer (casting the 3D printed resin patterns [CRP] group). The fit was measured using the silicon replica technique, and 8 points (A to H) were set per specimen to measure the marginal (points A, H) and internal (points B~G) gaps. The differences among the groups were compared using the Mann-Whitney U-test (α=0.05). Results: The mean of marginal fit in the SLM group was 69.67±18.04 ㎛, while in the CRP group was 117.10±41.95 ㎛. The internal fit of the SLM group was 95.18±41.20 ㎛, and that of the CRP group was 86.35±32 ㎛. As a result of statistical analysis, there was a significant difference in marginal fit between the SLM and CRP groups (p<0.05); however, there was no significant difference in internal fit between the SLM group and the CRP group (p>0.05). Conclusion: The marginal and internal fit of SLM is within the clinically acceptable range, and it seems to be applicable in terms of fit.