• 제목/요약/키워드: Die & Mold Industry

검색결과 120건 처리시간 0.019초

주유기 유량 변조방지를 위한 주유기 엔코더 신호 펄스 파형 모니터링 및 정량확인 시스템 개발 (Development of monitoring system and quantitative confirmation device technology to prevent counterfeiting and falsification of meters)

  • 박규백;이정우;임동욱;김지훈;박정래;하석재
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.55-61
    • /
    • 2022
  • As meters become digital and smart, energy data such as electricity, gas, heat, and water can be accurately and efficiently measured with a smart meter, providing consumers with data on energy used, so that real-time demand response and energy management services can be utilized. Although it is developing from a simple metering system to a smart metering industry to create a high value-added industry fused with ICT, illegal counterfeiting of electronic meters is causing problems in intelligent crimes such as manipulation and hacking of SW. The meter not only allows forgery of the meter data through arbitrary manipulation of the SW, but also leaves a fatal error in the metering performance, so that the OIML requires the validation of the SW from the authorized institution. In order to solve this problem, a quantitative confirmation device was developed in order to eradicate the act of cheating the fuel oil quantity through encoder pulse operation and program modulation, etc. In order to prevent the act of deceiving the lubricator, a device capable of checking pulse forgery was developed, manufactured, and verified. In addition, the performance of the device was verified by conducting an experiment on the meter being used in the actual field. It is judged that the developed quantitative confirmation device can be applied to other flow meters other than lubricators, and in this case, accurate measurement can be induced.

전동차 선로 이음매 판의 파손 해석 (Damage Analysis of Train Rail Fishplate)

  • 윤서현;최병철;신기항;남기우
    • 한국산업융합학회 논문집
    • /
    • 제26권2_2호
    • /
    • pp.341-347
    • /
    • 2023
  • The subway is one of the most common and important means of transportation in modern society. In order to use the subway safely, tracks are necessary, but trains are prone to derailment and collisions. In order for the train to run safely on the track, the fishplate that connects the line connection is used. The damaged railway was a fishplate for connecting subway lines used for 11 years, and damage analysis and countermeasures were presented. Beach marks were observed on both fracture surfaces, and striations appeared at the range of crack propagation. The damaged part is Cr carbide, which has a higher hardness than the base metal, and is judged to be embrittled and destroyed by fatigue. The SM50C fishplate was subjected to a cyclic stress of about 59% of the upper limit of tensile-compression fatigue limit, but inclusions were the cause of failure. In order to prevent fatigue failure of the SM50C steel fishplate, the occurrence of inclusions should be minimized and processed to have a homogeneous structure when manufacturing the fishplate. In addition, compressive residual stress is given through surface modification such as peening to control crack generation. It is necessary to minimize the change in shape that can become a stress concentration part along with accurate fastening of the bolt, and to design the stress distribution to be as uniform as possible.

다단 이송 성형 공정 해석을 통한 자동차 센터 힌지 성형용 SPFH 590 고강도 강판 블랭크 설계 (Blank Design of SPFH 590 Steel Sheet for Stamping of Center Hinge of Automotive via Analysis of Transfer Forming Process with Multi-Stages)

  • 안동규;송동한;손상식;한길영
    • 한국정밀공학회지
    • /
    • 제27권5호
    • /
    • pp.75-84
    • /
    • 2010
  • The aim of this paper is to design the blank shape of SPFH 590 high strength steel for stamping of the center hinge of automotive via numerical analyses and experiments for multi-stages transfer forming process. Three-dimensional elasto-plastic finite element analyses for the transfer forming process with six stages were performed using a commercial code AUTOFORM V4.2. The influence of the blank shape on the formability and the shape conformity were quantitatively examined through the FE analyses. From the results of the FE analysis, a feasible shape of the blank and the forming load were estimated. Stamping experiments were carried out using the proposed blank shape. The results of experiments were shown that the center hinge parts with the desired shapes can be manufactured successfully as the proposed blank shape is used. Through the comparison of the results of the experiments with those of the analyses, it was shown that the estimation of blank shape using the FE analysis is a proper methodology to create a feasible shape of the blank for the center hinge of automotive.

고온에서 마그네슘 합금의 크리이프 특성 (Creep characteristic of Mg alloy at high temperature)

  • 안정오;박경도;곽재섭;강대민
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.39-44
    • /
    • 2008
  • Magnesium alloys have given high attention to the industry of light-weigh as automobile and electronics with aluminium, titanium and composite alloys due to their high strength, low specific density and good damping characteristics. But the magnesium contained structures under high temperature have the problems related to creep deformation and rupture life, which is a reason of developing the new material against creep deformation to use them safely. The purpose of this study is to predict the creep deformation mechanism and rupture time of AZ31 magnesium alloy. For this, creep tests of AZ31 magnesium alloy were done under constant creep load and temperature with the equipment including automatic temperature controller with acquisition computer. The apparent activation energy Qc and the applied stress exponent n, rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of $150^{\circ}C$ to $300^{\circ}C$. In order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $150^{\circ}C{\sim}300^{\circ}C$ the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal and a little low, respectively, to that of the self diffusion of Mg alloy.

  • PDF

사각형 판재성형 시 벽두께 증육을 위한 금형 및 공정 설계 (Process and Die Design of Square Cup Drawing for Wall Thickening)

  • 김진호;홍석무
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.5789-5794
    • /
    • 2015
  • 최근 스마트 폰, 모바일 PC 제품의 외관에 필요한 가벼운 금속제품으로 제조를 하기 위하여 알루미늄 압출 공정과 CNC 가공기법을 적용한 생산방식이 널리 사용되고 있다. 하지만, 알루미늄 압출법은 외관 디자인의 제약이 있으며, 특히 CNC 가공 프로세스가 상대적으로 높은 생산 비용 및 낮은 생산성으로 생산단가가 많이 높은 단점이 있다. 본 연구에서, 새로운 처리 방법을 순서 재료비를 대폭 감소시키고, 제조 속도를 향상시키기 위해 판재성형과 부피성형의 두가지 공정을 섞어 새로운 판단조 공정을 개발하였다. 새로운 판단조 공법(hybrid plate forging)이란 우선 일반적인 딥드로잉으로 중간 모양을 만든 후 원하는 벽 부위만 증육을 하는 방법을 의미한다. 이러한 판단조 공법을 활용하여 재료의 낭비와 제조 시간을 최소화하는 것이 가능하게 된다. 본 연구에서는 상용 유한 요소 프로그램 AFDEX-2D를 통해 판단조공정을 설계하였고 최적의 사용 가능한 소재의 두께와 초기 폭을 설계하였다. 최종적으로 실제 노트북 케이스 금형을 제작하여 제안한 방법의 타당성을 검증하였다.

Digital Micromirror Device와 Polygon scanner의 Lithography 특성에 따른 산업적 분석 (Industrial analysis according to lithography characteristics of digital micromirror device and polygon scanner)

  • 김지훈;박규백;박정래;고강호;이정우;임동욱
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.65-71
    • /
    • 2021
  • In the early days of laser invention, it was simply used as a measuring tool, but as lasers became more common, they became an indispensable processing tool in the industry. Short-wavelength lasers are used to make patterns on wafers used in semiconductors depending on the wavelength, such as CO2 laser, YAG laser, green laser, and UV laser. At first, the hole of the PCB board mainly used for electronic parts was not thin and the hole size was large, so a mechanical drill was used. However, in order to realize product miniaturization and high integration, small hole processing lasers have become essential, and pattern exposure for small hole sizes has become essential. This paper intends to analyze the characteristics through patterns by exposing the PCB substrate through DMD and polygon scanner, which are different optical systems. Since the optical systems are different, the size of the patterns was made the same, and exposure was performed under the optimal conditions for each system. Pattern characteristics were analyzed through a 3D profiler. As a result of the analysis, there was no significant difference in line width between the two systems. However, it was confirmed that dmd had better pattern precision and polygon scanner had better productivity.

안과질환 처치를 위한 임플란트 수송장치에서 레버 작동력에 영향을 주는 연동장치에 대한 인자별 영향도 분석 (Analysis of the influence degree of each factor on the linkage affecting the lever actuating force in an implant transport device for the treatment of eye diseases)

  • 이정원;국중섭
    • Design & Manufacturing
    • /
    • 제18권3호
    • /
    • pp.1-8
    • /
    • 2024
  • Macular degeneration is a disease that damages the macula, the center of the retina, and is one of the three major eye diseases along with glaucoma and diabetic retinopathy. The optic nerve and most of the photoreceptor cells are located here, and since this is where images of objects are formed, it is the most important area for vision. The main symptom of macular degeneration is the inability to clearly distinguish the shape of objects or the inability to distinguish colors and light and dark. It is also a serious eye disease that causes black spots in the center of the field of vision. However, it is difficult to distinguish it from the form of vision loss due to presbyopia, so early diagnosis is often missed. The most common treatment for macular degeneration is antibody injection therapy. This treatment requires regular injections once every 1-2 months. When receiving antibody injection therapy, the fear of having to inject directly into the eye and the cost of long-term repeated procedures are a great burden to patients. To overcome these problems, special sustained-release formulations using drug delivery systems are being developed. Since the release speed and release time of the drug can be controlled, the number of times the drug is administered can be drastically reduced. However, the implant (Ø 0.46×6.0mm), which is a sustained-release agent, is manufactured by mixing biodegradable resin (PLGA) and therapeutic agent in a ratio of 4:6, so it is very brittle and there is a high risk of implant damage during handling. In order to safely insert the implant into the eye, a transport device that can be driven with controlled force is required. Therefore, in this study, the lever operating force was measured and analyzed to determine the influence of factors according to the cross-sectional thickness and shape of the linkage produced through injection molding as well as the post-process.

PA12 절연 코팅 부스바의 굽힘 공정에서 주름 불량 원인 분석 및 개선방안 연구 (Analysis of Wrinkle Defects and Improvement Methods in the Bending Process of PA12 Insulation-Coated Busbars)

  • 전용준
    • Design & Manufacturing
    • /
    • 제18권3호
    • /
    • pp.15-21
    • /
    • 2024
  • This study investigates the causes of wrinkle defects in PA12-insulated busbars used in electric vehicles and proposes an improvement method to address these issues. Busbars, essential components for efficient current transmission in electric vehicle battery modules, require complex three-dimensional bending to optimize internal layouts. For this study, oxygen-free copper busbars with a 0.8 mm PA12 insulation coating were subjected to three types of bending tests: flat bending, edge bending, and torsional bending. Experimental results showed that wrinkle defects only occurred during edge bending, while flat and torsional bending modes exhibited no significant issues. Cross-sectional analysis revealed that the PA12 insulation layer's thickness was uneven, with thinner sections on flat areas and thicker accumulation at the comers. This uneven distribution led to poor adhesion between the insulation and copper layers, resulting in the formation of wrinkles, particularly in areas with air gaps ranging from 75 to 250 ㎛. To further analyze the issue, finite element analysis (FEA) of the bending process was performed under adhesive and non-adhesive conditions. The results confirmed that wrinkles formed when the adhesion between the copper and PA12 coating was insufficient. Improved adhesion conditions, achieved through a heat treatment process at 120℃ for 2 hours, significantly reduced the occurrence of wrinkles during edge bending. This study demonstrates that optimizing the adhesion between the insulation coating and the copper busbar, through controlled heat treatment, can prevent wrinkle defects. The findings provide a pathway for enhancing the durability and performance of insulated busbars in electric vehicle applications.

이중 쇼트 피닝에 의한 SCM822H 강의 무해화 균열 크기 평가 (Evaluation of Harmless Crack Size of SCM822H Steel by Double Shot Peening)

  • 최진우;윤서현;권영국;이금화;남기우
    • 한국산업융합학회 논문집
    • /
    • 제26권6_2호
    • /
    • pp.1011-1017
    • /
    • 2023
  • In this study, the harmless crack size (ahml) by double shot peening (DSP) using shot balls with different diameters was evaluated on carburized, quenched-tempered SCM822H steel. The minimum crack size (aNDI) detectable by non-destructive inspection was also evaluated. The relationship between the crack size (a25,50) that reduces the fatigue limit by 25% and 50% and ahml was evaluated. The residual stress of DSP was greater in SP(0.6+0.08) than SP(0.8+0.08) and appeared deeper in the depth direction. In addition, the hardness below the surface appeared larger. The fatigue limit of DSP increased 2.07 times and 1.95 times compared to non-SP. All ahml of the DSP specimen was determined at the depth (a). The compressive residual stress distribution affects ahml, and the ahml of SP(0.6+0.08), which has a large compressive residual stress and a high fatigue limit, appeared large. ahml of SP(0.6+0.08) introduced deeper than the residual stress of SP(0.8+0.08) is larger in the range of As=1.0-0.3. Since the residual stress in the thickness direction has a greater effect on ahml than the residual stress at the surface, it is necessary to introduce it more deeply. The relation of ahml, a25,50, and aNDI were evaluated in the point for safety and reliability.

마그네슘 합금 판재의 평면 DIC 측정을 위한 지그 개발과 이를 활용한 단축 변형 특성 분석 (Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs)

  • 강정은;유지윤;최인규;유제형;이창환
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.23-29
    • /
    • 2021
  • The specific strength of magnesium alloy is four times that of iron and 1.5 times that of aluminum. For this reason, its use is increasing in the transportation industry which is promoting weight reduction. At room temperature, magnesium alloy has low formability due to Hexagonal closed packed (HCP) structure with relatively little slip plane. However, as the molding temperature increases, the formability of the magnesium alloy is greatly improved due to the activation of other additional slip systems, and the flow stress and elongation vary greatly depending on the temperature. In addition, magnesium alloys exhibit asymmetrical behavior, which is different from tensile and compression behavior. In this study, a jig was developed that can measure the plane deformation behavior on the surface of a material in tensile and compression tests of magnesium alloys in warm temperature. A jig was designed to prevent buckling occurring in the compression test by applying a certain pressure to apply it to the tensile and compression tests. And the tensile and compressive behavior of magnesium at each temperature was investigated with the developed jig and DIC equipment. In each experiment, the strain rate condition was set to a quasi-static strain rate of 0.01/s. The transformation temperature is room temperature, 100℃. 150℃, 200℃, 250℃. As a result of the experiment, the flow stress tended to decrease as the temperature increased. The maximum stress decreased by 60% at 250 degrees compared to room temperature. Particularly, work softening occurred above 150 degrees, which is the recrystallization temperature of the magnesium alloy. The elongation also tended to increase as the deformation temperature increased and increased by 60% at 250 degrees compared to room temperature. In the compression experiment, it was confirmed that the maximum stress decreased as the temperature increased.