• Title/Summary/Keyword: Die & Mold Design Engineering

Search Result 404, Processing Time 0.024 seconds

The Numerical Analysis of Extrusion Forming on the Manufactured Artificial Lightweight Aggregate Made of Incinerated Sewage Sludge Ash by a Finite Element Method (유한요소법을 이용한 하수슬러지 소각재의 인공경량골재 제조시 압출성형해석)

  • Jung, Byung-Gil;Bae, Jin-Woo;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1169-1177
    • /
    • 2007
  • The main objective of this research was to evaluate the effects of process variables which were forming ability, flow displacement, effective stress, effective strain, fluid vector and products defects on manufactured artificial lightweight aggregate made of both incinerated sewage sludge ash and clay by means of the numerical analysis of a rigid-plastic finite element method. CATIA (3D CAD program) was used for an extrusion metal mold design that was widely used in designing aircraft, automobile and metallic molds. A metal forming analysis program (ATES Co.) had a function of a rigid-plastic finite element method was used to analyze the program. The result of extrusion forming analysis indicated clearly that a shape retention of the manufactured artificial light-weight aggregate could be maintained by increasing the extrusion ratio (increasing compressive strength inside of extrusion die) and decreasing the die angle. The stress concentration of metal mold was increased by increasing an extrusion ratio, and it was higher in a junction of punch and materials, friction parts between a bottom of the punch and inside of a container, a place of die angle and a place of die of metal mold. Therefore, a heat treatment as well as a rounding treatment for stress distribution in the higher stress concentration regions were necessary to extend a lifetime of the metallic mold. A deformity of the products could have made from several factors which were a surface crack, a lack of the shape retention and a crack of inside of the products. Specially, the surface crack in the products was the most notably affected by the extrusion ratio.

Design and fabrication of molds moved wall thickness for biochip considering molding stability (성형안정성을 고려한 바이오칩용 측벽 이동형 금형설계 및 제작)

  • Go, Young-Bae;Kim, Jong-Sun;Min, In-Gi;Yu, Jae-Won;Kim, Jong-Duck;Yoon, Kyung-Hwan;Lee, Sung-Ho;Kim, Kyung-Min;Kim, Byung-Il;Hwang, Chul-Jin
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.25-28
    • /
    • 2008
  • Micro fabrication of biochip such like lab-on-a-chip becomes increasingly important. In this study, we designed and manufactured of new molds which were main factors for forming process in order to mass produce of biochip using forming process. Forming analysis of biochip was performed by Moldflow software. Results of this study are able to design and manufacture the mold which can be easy to eject the workpiece by using the slide mechanism for biochip.

  • PDF

Optimal Tool Length Computation of NC Data for 5-axis Ball-ended Milling (5축 볼엔드밀 가공 NC 데이터의 최적 공구 길이 계산)

  • Cho, Hyeon-Uk;Park, Jung-Whan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.354-361
    • /
    • 2010
  • The paper presents an efficient computation of optimal tool length for 5-axis mold & die machining. The implemented procedure processes an NC file as an initial input, where the NC data is generated by another commercial CAM system. A commercial CAM system generates 5-axis machining NC data which, in its own way, is optimal based on pre-defined machining condition such as tool-path pattern, tool-axis control via inclination angles, etc. The proper tool-length should also be provided. The tool-length should be as small as possible in order to enhance machinability as well as surface finish. A feasible tool-length at each NC block can be obtained by checking interference between workpiece and tool components, usually when the tool-axis is not modified at this stage for most CAM systems. Then the minimum feasible tool-length for an NC file consisting of N blocks is the maximum of N tool-length values. However, it can be noted that slight modification of tool-axis at each block may reduce the minimum feasible tool-length in mold & die machining. This approach can effectively be applied in machining feature regions such as steep wall or deep cavity. It has been implemented and is used at a molding die manufacturing company in Korea.

Optimum Design of Formed Tool for Die of Bearing Rubber Seal Using Design of Experiments (실험계획법에 의한 자동차용 러버실 금형가공을 위한 총형공구의 최적설계)

  • Lee, Li-Hai;Lim, Pyo;Lee, Hi-Koan;Yang, Gyun-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.47-53
    • /
    • 2007
  • A bearing is one of core parts in automobile. Rubber seal of the bearing is important to improve performance of bearing, formed by hot-press die of rubber seal for the intricate shape. In this study, formed tools are used to machine die of bearing rubber seal and the machining operation is classified into the several process of high precision. Design of experiments is used to optimize selection of the formed tools for the efficient machining of the hot-press die. The cutting force, tool wear and tool life are determined to characteristics. And, the clearance angle, the rake angle and the length cutting edge are considered as the major factors. Experiments are repeated to use one-way factorial design, and tool life is predicted by regression model.

Optimization of injection molding process for plastic keypad on mobile phone (휴대폰 키패드의 최적 사출성형 공정 설계)

  • Park, Eun-Seo;Shin, Sang-Eun;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.34-38
    • /
    • 2017
  • Deformation frequently occurring in injection molded products is a phenomenon displayed due to uneven shrinkage distribution and orientation of the whole molded product. Shrinkage deformation is a very serious problem because it causes deformation of the molded article and shortens the performance of the product. In this paper, we are focusing on the warpage of keypad in mobile phone. In other words, we focused on minimizing keypad deformation. In the study, the Taguchi method was applied to find the injection molding conditions that minimize the deformation of the keypad. In the case of this keypad, the main factors influencing the shrinkage deformation were predicted as the melting temperature, coolant temperature and cooling time. In addition, the optimum molding conditions were obtained and the shrinkage strain was minimized. Experiments for the Taguchi method and verification of optimal molding conditions were performed using an injection molding analysis program.

A study on slit opening and flexural strength of carbon/epoxy prepregs with slit patterns (슬릿 패턴 형상에 따른 Carbon/Epoxy 프리프레그 성형물의 굽힘 강도 특성 및 슬릿 변형량 분석)

  • Lee, Sung-Gyun;Won, Si-Tae;Yoon, Gil-Sang;Kim, Yong-Dae;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.6-11
    • /
    • 2016
  • Designed patterns of slit are introduced to the uni-directional (UD) prepreg in order to enhance the formability of the carbon/epoxy composites without wrinkling and laddering. Three different types of the slit alignment along the thickness direction are applied to analyse the deformation behavior during the compression moulding process of laminates. Degrees of the slit open and the mechanical strength are evaluated based on the level of the compaction pressure in the course of forming process. Results have shown that the mechanical strength of laminates having slits could attain at least 80% of the conventional ones without slits. However, further studies are required to identify the direct relevance of the slit alignment in laminate to the mechanical properties.

A Study of punch and die plate for restriking mold of structure engineering design (리스트라이킹 금형용 펀치와 다이플레이트의 구조 설계에 관한 연구)

  • Kim, Sei-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.708-712
    • /
    • 2007
  • Restriking is a shaping method added to the processed products to get higher precision and accuracy in the press die process. This method is frequently used in bending works and drawing works. The purpose of this research is to develop a design for rectangular drawing die punch and die block form which enables drawing formation and restriking in one set.

  • PDF

Status and innovation plan of manufacturing technology in plastics engineering - focusing on thermoplastics, composites and molds - (플라스틱 공학에서 제조 기술의 현황과 혁신 방안 - 열가소성수지, 복합재료와 금형을 중심으로 -)

  • Kim, Sun-Kyoung
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • In this study, the current state of the plastics industry has been examined. The direction of development and innovation is reviewed and commented. The technical statuses of various sectors such as thermoplastic resin, composite material, mold engineering, and simulation have been scrutinized. In addition, the industrial status of each sector has been reviewed. Then, the challenges that the plastics manufacturing industry has to deal with have been discussed. Especially, the situation in Republic of Korea has been elaborated in detail. Based on the discussion, an open innovation strategy has been suggested. It has been argued in this work that the open innovation strategy will enables efficient funding and development by avoiding resource consuming rent seeking.

Numerical study on the blowing deformation characteristics of a square shaped preform (사각 프리폼 블로우 성형 특성에 관한 수치적 연구)

  • Cho, Seung-Hyun;Song, Min-Jae;Lee, Dong-Won;KO, Young-Bae
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2015
  • This study presents the preform injection molding and the blow molding of the injection stretch-blow molding process for PET bottles. The numerical analysis of the injection molding and the blow molding of a preform is considered in this paper using CAE with a view to minimize the warpage and the thickness. In order to determine the design parameters and processing conditions in injection/blow molding, it is very important to establish the numerical model with physical phenomenon. In this study, we appropriately predicted the warpage, deformation and thickness distribution along the product walls.

  • PDF

A study on the blood collecting device of main shaft injection molding for measuring blood glucose by CAE analysis (혈당 측정을 위한 채혈기구 메인 샤프트의 사출성형 시뮬레이션 및 시 사출에 관한 연구)

  • Baek, Seung Yub
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • In diabetics, daily blood glucose testing is generally required at home, and thus, performing blood collection several times a day using a blood line is essential. Blood collection in the home and in the hospital is a source of pain and is the second most common cause of infection. In blood collecting device generally consists of four major parts: inner-case, outer case, main shaft and triger, and the most import part among those for necessary functionality is the main shaft. Filling time and injection pressure, filling balance, strain-rate analysis of change based on availability of the product. The Moldflow of FEM simulation is used for the analysis of injection molding process. In this study, aims to create a technique for injection molding and manufacturing of a main shaft of a high-performance blood-collecting apparatus capable of automatically extracting a lancet to relieve pain through depth control of the lancet.