• Title/Summary/Keyword: Dichlorophenol(DCP)

Search Result 23, Processing Time 0.021 seconds

MECHANISM OF PHENOXY COMPOUNDS AS ANDROGENIC ENDOCRINE DISRUPTORS

  • Kim, Hyun-Jung;Kim, Won-Dai;Kwon, Taik-Hun;Kim, Dong-Hyun;Park, Yong-In;Dong, Mi-Sook
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.170-170
    • /
    • 2002
  • Phenxoy compounds, 2,4-Dichlorophenol acetoxyacid (2,4-D) and 2,4-dichlorophenol (DCP), are widely used as a herbicide and intermediate for pesticide manufacturing, respectively. In order to assess the potential of these compounds as endocrine disruptors, we studied the androgenicity of them using in vivo and in vitro assay system.(omitted)

  • PDF

Effect of Aeration on Removal of phenolic Compounds in Soil (공기공급이 토양내 페놀화합물 제거에 미치는 영향)

  • 박준석;남궁완;황의영
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.3-12
    • /
    • 2000
  • This study was carried out to evaluate the effect of aeration on removal of phenolic compounds in soils. Phenol, 2,4-dichlorophenol, and pentachlorophenol as phenolic compounds were chosen in this study. Texture of soil used was sandy loam. Temperature and moisture content of the soils in lab-scale reactors were maintained at $25^{\circ}C$ and at 15%, respectively. Phenolic compounds vaporized from reactors were trapped by methylene chloride solution. Phenolic compounds were applied to the soils as individual compound Aeration improved the phenol degradation rate in soil, while it did not in case of 2,4-dichlorophenol and pentachlorophenol. The amount of phenol vaporized by aeration was only 0.3of of that of initial phenol compound added to the soil. First order kinetics described the degradation rates of phenolic compounds better than zero order kinetics.

  • PDF

A Fiber Optic Sensor for Determination of 2,4-Dichlorophenol Based on Oxygen Oxidation Catalyzed by Iron(III) Tetrasulfophthalocyanine

  • Tong, Yilin;Li, Dapeng;Huang, Jun;Zhang, Cong;Li, Kun;Ding, Liyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3307-3311
    • /
    • 2013
  • A new fiber optical sensor was developed for the determination of 2,4-dichlorophenol (DCP). The sensor was based on DCP oxidation by oxygen with the catalysis of iron(III) tetrasulfophthalocyanine (Fe(III)PcTs). The optical oxygen sensing film with $Ru(bpy)_3Cl_2$ as the fluorescence indicator was used to determine the consumption of oxygen in solution. A lock-in amplifier was used for detecting the lifetime of the oxygen sensing film by measuring the phase delay change of the sensor head. The different variables affecting the sensor performance were evaluated and optimized. Under the optimal conditions (i.e. pH 6.0, $25^{\circ}C$, Fe(III)PcTs concentration of 0.62 mg/mL), the linear detection range and response time of the sensor are $1.0{\times}10^{-6}-9.0{\times}10^{-6}$ mol/L and 250 s, respectively. The sensor displays high selectivity, good repeatability and stability, and can be used as an effective tool in analyzing DCP concentration in practical samples.

Isolation and Characterization of Soil Streptomyces Involved in 2,4-Dichlorophenol Oxidation

  • Kang, Min-Jin;Kang, Ja-Kyoung;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.877-880
    • /
    • 1999
  • Over 50 morphologically distinctive soil Streptomyces were isolated from various Jocations in the Yongin area in Korea and visually screened for dye-decoloring activities on an agar plate. Two Streptomyces species (AD001 and ND002) showed strong dye-decoloring activities on the plate containing congo-red and new-fuchin dyes, respectively. Also, the liquid culture supernatants of these species showed 2,4-dicholophenol (DCP) oxidation activities only in the presence of hydrogen peroxide, a characteristic of Actinomycetes lignin-peroxidase (ALiP)-P3 isoform found in dye-degrading S. viridosporus T7A and S. badius 252. Based on their dye-decoloring capabilities and the 2,4-DCP oxidation kinetic data, it is suggested that these Streptomyces secrete not-yet-characterized extracelluar enzyme(s), whose activities are very similar to the ALiP-P3 enzyme.

  • PDF

Characteristics of Decomposition for Refractory Organic Compounds in Aqueous Solution by Sonolysis and Electrolysis (초음파와 전기분해를 이용한 수중의 난분해성 유기물질의 분해 특성)

  • Jeong, Jae-Baek;Lee, Seong-Ho;Bae, Jun-Ung
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.6
    • /
    • pp.454-463
    • /
    • 2006
  • refractory organic compounds in aqueous solution are not readily removed by the existing conventional wastewater treatment process. In recent years, the sonolysis and electrochemical oxidation process had been shown to be promising for wastewater treatment due to the effectiveness and easiness in operation. This study was performed to investigate the characteristics of sonolytic and electrolytic decomposition as the basic data for development of the wastewater treatment process. Trichloroethylene(TCE) and 2,4- dichlorophenol(2,4-DCP) were used as the samples, and their destruction efficiency were measured with various operating parameters, such as initial solution concentration, initial solution pH, reaction temperature, sonic power and current density. Also, the decomposition mechanism conformed indirectly with the effect of NaHCO3 as a radical scavenger on the decomposition reaction. Thermal decompositon reaction is predominant for TCE but thermal and radical decompositon reactions were dominant for 2,4-DCP. Results showed that the destruction efficiencies of all samples were above 65% within 120 minutes by sonolysis and electrolysis at the same time, and were increased with increasing initial concentration, sonic power and current density. Destruction efficiency of TCE was high in the acidic solution, but 2,4-DCP showed high destruction efficiency in basic solution.

Purification and Characterization of 2,4-Dichlorophenol Oxidizing Peroxidase from Streptomyces sp. AD001

  • Jeon, Jeong-Ho;Yun-Jon Han;Tae-Gu kang;Eung-Soo Kim;Soon-Kwang Hong;Byeong-Chul Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.972-978
    • /
    • 2002
  • Streptomyces sp. AD001 is a Gram-positive soil actinomycetes secreting an uncharacterized 2,4-dichlorophenol (DCP) oxidizing enzyme, whose activity is similar to the previously known Actinomycetes lignin-peroxidase (ALiP). This extracellular peroxidase was purified from Streptomyces sp. AD001 as a single protein band on an SDS-PACE by ammonium sulfate fractionation, Q-sepharose, concanavalin A, and Bio-Gel HTP column chromatographies. The molecular mass of the purified peroxidase was determined by SDS-PAGE to be 45.2 kDa, and 49.7 kDa with MALDI-TOF-MS, respectively. The highest level of peroxidase activity was observed at pH 7.5 and $30^{\circ}C$. The amino terminal sequence of the purified peroxidase (G-E-P-E-E-G-N-V-D-G-T-L) showed no significant homologies to my known proteins, suggesting that Streptomyces sp. AD001 may secrete a novel kind of bacterial peroxidase Initial rate kinetic data of the 2,4-DCP oxidation were best modeled with a random-binding bireactant system.

Regiospecificity of Reductive Dechlorination of Chlorophenols in Mono- and Di-Chlorophenol Adapted Anoxic Sediments (Mono-와 Di-Chlorophenol에 적응시킨 혐기성 저질의 탈염소 특성)

  • 공인철;이석모
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.65-76
    • /
    • 1994
  • The regiospecific potential for the reductive dechlorination of 2-, 3-, 4-, 2, 3-, 2, 4-, and 3, 4-chlorophenols (CPs) was studied in mono- and di-CP(DCP) adapted sediment slurries(10% solids). Freshwater sediments adapted to transform 2-CP dechlorinated all tested mono- and di-CPs except 4-CP without a lag period. Adaptation to 2-CP, thus, enhanced the onset of dechlorination of 3-CP and all ortho-substituted CPs tested. Sediment adapted to transform 3-CP dechlorinated all test CPs, except 4-CP and 2, 4-DCP, without a lag period. Sediment adapted to individual DCPs (2, 3-, 2, 4-, and 3, 4-DCP_ exhibited dechlorination(no lag phase) of 2-CP, 2, 3-, 2, 4-, and 3, 4-CDP. Interestingly, meta-cleavage of 3, 4-DCP in all tested adapted sediment occurred, while para-cleavage occurred in 3, 4-DCP adapted sediment. Sediment adapted to dechlorinate ortho and meta-chlorines exhibited a preference for meta following ortho-cleavage, but not for para-cleavage, while the preference for reductive dechlorination was ortho>meta>para for mono-CPs and ortho>para>meta for DCPs in unadapted freshwater anoxic sediments.

  • PDF

Degradation of Chlorinated Phenolic Compounds by Soil Actinomycetes Isolated from the Contami-nated Soil Nearby the Kyung-An River (경안천 유역 오염토양에서 분리한 방선균의 염화 페놀계 화합물 분해)

  • 김성민;김창영;김응수
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.287-292
    • /
    • 2002
  • Lignin-peroxidase (LiP) has been considered as one of the most important industrial enzymes for biodegradation of various recalcitrant toxic compounds such as chlorinated aromatic hydrocarbons and azo-dyes. Recently, several soil actinomycetes have been reported to secrete a functionally-similar lignin-peroxidase called actinomycetes lig-nin-peroxidase (ALiP). In this manuscript, we isolated over 100 morphologically distinct actinomycetes from the contaminated soils around 10 different gas stations located nearby the Kyung-An river. Among these actinomycetes screened based on the congo-red dye-decolorization activities, one newly-isolated actinomycetes named SMA-2 showed the most significant dye-decoloring activity on the congo-red plate as well as a significant ALiP activity in a yeast-extract-malt-extract liquid media supplemented with starch. The optimum SMA-2 culture condition fur ALiP production was determined and the kinetic parameters fur the SMA-2 AkIP activity were characterized. The optimally-cultured SMA-2 also exhibited the oxidation activities toward various recalcitrant aromatic compounds including phenol, 2- chlorophenol, 4- chlorophenol, 2,4- dichlorophenol ,2,6- dichlorophenol, and 2,4, f-trichlorophe - not, suggesting a potential application of SMA-2 for contaminated soil bioremediation.

Characteristics of the sonolytic reaction of refractory aromatic compounds in aqueous solution by ultrasound (초음파에 의한 수중의 난분해성 방향족화합물의 반응특성)

  • Sohn, Jong-Ryueul;Mo, Se-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.411-419
    • /
    • 2002
  • In this study, the series of ultrasonic irradiation for removal of refractory aromatic compounds has been selected as a model reaction in the batch reactor system in order to obtain the reaction kinetics. The products obtained from the ultrasonic irradiation were analysed by GC and GC/MSD. The decomposition of benzene produced toluene, phenol, and C1-C4 compounds, while the intermediates during the ultrasonic irradiation of 2,4-Dichlorophenol(DCP) were phenol, HCl, catechol, hydroquinone, and benzoquinone. It was found that more than 80% of benzene, and 2,4-DCP solutions were removed within 2 hours in all reaction conditions. The reaction order in the degradation of these three compounds was verified as pseudo-zero or first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds could be removed by the ultrasonic irradiation with radicals, such as $H{\cdot}$ and $OH{\cdot}$ radical causing the high increase of pressure and temperature. Finally, it appeared that the technology using ultrasonic irradiation can be applied to the treatment of refractory compounds which are difficult to be decomposed by the conventional methods.

Biodegradation of the Commercial Phenoxy Herbicide 2,4-D by Microbial Consortium (미생물 컨소시엄에 의한 시판 페녹시계 제초제 2,4-D의 생물분해)

  • 오계헌;김용석
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.469-474
    • /
    • 1994
  • The purpose of the work was to evaluate the feasibility of a biological treatment process for the phenoxy alkanoic herbicide 2,4-D(2,4-dichlorophenoxyacetic acid) as a commercial pesticide. The phenoxy herbicide was 2,4-D amine salts which contained 40%(vol/vol) 2,4-D and 60%(vol/vol) solvent. A microbial consortium has been derived by enrichment with 2,4-D. The consortium utilized 2,4-D as the sole source of carbon and energy. Optimal pH on the 2,4-D degradation was 7.0 in this experiment. As concentrations of 2,4-D were increased, the degradation by microbial consontium became inhibited. The amendment with yeast extract and ascorbic acid accelerated the degradation of 2,4-D. High performance liquid chromatography methodology was used to measure 2,4-D and it also resolved 2,4-DCP(2,4-dichlorophenol), the corresponding phenol as intermediate. Gas chromatography-mass spectrometry was used for preliminary identification of the intermediate 2,4-DCP. UV scans of spent cultures showed that the maximum absorption of 2,4-D at the wavelength of 283 nm was decreased toward the end of incubation, but the consortium displayed no detectable spectral changes or peak shifts in the UV absorbance.

  • PDF