• Title/Summary/Keyword: Diaporthe batatas

Search Result 1, Processing Time 0.012 seconds

In Vitro and In Vivo Inhibitory Effects of Gaseous Chlorine Dioxide Against Diaporthe batatas Isolated from Stored Sweetpotato

  • Lee, Ye Ji;Jeong, Jin-Ju;Jin, Hyunjung;Kim, Wook;Yu, Gyeong-Dan;Kim, Ki Deok
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • Chlorine dioxide ($ClO_2$) can be used as an alternative disinfectant for controlling fungal contamination during postharvest storage. In this study, we tested the in vitro and in vivo inhibitory effects of gaseous $ClO_2$ against Diaporthe batatas SP-d1, the causal agent of sweetpotato dry rot. In in vitro tests, spore suspensions of SP-d1 spread on acidified potato dextrose agar were treated with various $ClO_2$ concentrations (1-20 ppm) for 0-60 min. Fungal growth was significantly inhibited at 1 ppm of $ClO_2$ treatment for 30 min, and completely inhibited at 20 ppm. In in vivo tests, spore suspensions were drop-inoculated onto sweetpotato slices, followed by $ClO_2$ treatment with different concentrations and durations. Lesion diameters were not significantly different between the tested $ClO_2$ concentrations; however, lesion diameters significantly decreased upon increasing the exposure time. Similarly, fungal populations decreased at the tested $ClO_2$ concentrations over time. However, the sliced tissue itself hardened after 60-min $ClO_2$ treatments, especially at 20 ppm of $ClO_2$. When sweetpotato roots were dip-inoculated in spore suspensions for 10 min prior to treatment with 20 and 40 ppm of $ClO_2$ for 0-60 min, fungal populations decreased with increasing $ClO_2$ concentrations. Taken together, these results showed that gaseous $ClO_2$ could significantly inhibit D. batatas growth and dry rot development in sweetpotato. Overall, gaseous $ClO_2$ could be used to control this fungal disease during the postharvest storage of sweetpotato.