• Title/Summary/Keyword: Diaphragm respiratory

검색결과 112건 처리시간 0.019초

Evaluation of Average CT to Reduce the Artifact in PET/CT (PET/CT 검사에서 호흡에 따른 인공산물을 줄이기 위한 Average CT의 유용성)

  • Kim, Jung-Sun;Nam, Ki-Pyo;Park, Seung-Yong;Ryu, Jae-Kwang;Cha, Min-Kyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • 제14권1호
    • /
    • pp.3-7
    • /
    • 2010
  • Purpose: The usefulness of Positron Emission Tomography (PET) images in diagnosis, staging, recurrent and treatment response evaluation has already been known. However, tumors which are small size, located in lower lobe of lung or upper lobe of liver are shown misalignment, distortion and different Standard Uptake Value (SUV) by respiration in PET images. Therefore, if radiotherapy based on normal respiration, it may cause low treatment response or more side effects because targets which had to treat, out of treat range or over dose to normal tissue. The purpose of this study is to evaluate attenuation-correction with Average CT (ACT) for more accuracy SUV measurement and minimize artifact by respiration. Materials and Methods: 13 patients, who had tumors which are around the diaphragm, underwent ACT scan after Helical CT (HCT) scan with PET/CT (Discovery DSTE 8; GE Healthcare). We quantified the differences between attenuation corrected image with HCT and attenuation corrected image with ACT in artifact size and maximum SUV ($SUV_{max}$). Artifacts were evaluated by measurement of the curved photogenic area in the lower thorax of the PET images for all patients. $SUV_{max}$ was measured separately at the primary tumors. Analysis program was Advantage Workstation v4.3 (GE Healthcare). Patients were injected with 7.4 MBq (0.2 $mC_i$) per kg of $^{18}F$-FDG and scanned 1 hour after injection. The PET acquisition was 3 minute per bed. Results: Significantly lower artifact were observed in PET/ACT images than in PET/HCT images (below-thoracic artifacts caused by under corrected $1.5{\pm}3.5$ cm vs. $13.4{\pm}4.2$ cm). Significantly higher $SUV_{max}$ were noted in PET/ACT images than in PET/HCT images in the primary tumor. Compared with PET/HCT images, $SUV_{max}$ in PET/ACT images were higher by $5.3{\pm}3.9%$ (mean value) tumor. The highest difference was observed in Lower lobe of lung (7.7 to 8.7; 13%). Conclusion: Due to its significantly reduced artifacts in lower thoracic, attenuation corrected image with ACT images provided more reliable $SUV_{max}$ and may be helpful in monitoring treatment response. Moreover, ACT can separate upper lobe of liver and lower lobe of lung, it may be helpful in interpretation. ACT will be clinically useful, considering increased dose caused by ACT scan and adapt.

  • PDF

Assessment of Computed Tomographic Lung Density in Beagle and Shihtzu Dogs : Influence of Position and Positive End Expiratory Pressure (비글과 시츄견에서 호기말 양압에 따른 전산화 단층촬영상의 폐밀도의 평가)

  • Kim, Tae-Hun;Chang, Jin-Hwa;Yun, Seok-Ju;Yoon, Jung-Hee;Chang, Dong-Woo
    • Journal of Veterinary Clinics
    • /
    • 제27권3호
    • /
    • pp.273-283
    • /
    • 2010
  • The objective of this study was to measure densities in various areas of the normal canine lung with computed tomography (CT) depending on influences of gravity and the degree of lung inflation and to determine optimal positions and positive end expiratory pressure of canine lung for CT scanning. In each eight normal Beagle and Shihtzu dogs, a respiratory breathhold maneuver without spontaenous breathing at different positive end expiratory pressure (PEEP) of 0 mmHg, 10 mmHg and 20 mmHg was applied with the position of right and left lateral recumbency, sternal recumbency, and dorsal recumbency and spiral-CT scans of the total lung were acquired. Slices were selected at three levels through the apex, middle and basal lung at the aortic arch, carina and just above the diaphragm and lung density was measured in the dorsal, ventral, and lateral portions of the peripheral lung field. Lung density in dependent areas was higher than in nondependent areas (p < 0.05) regardless of species, positions, anatomic locations at the PEEP of 0 mmHg and 10 mmHg. However, no significant difference of lung density was found at PEEP of 20 mmHg in both species except the dorsal recumbency in Shihtzu dogs. This density gradient in the dependent areas is strongly influenced by PEEP (p < 0.05). In the four positions on the CT gantry, the lung density at the dependent and nondependent location of the lung was greater at the aortic arch than at the base (p < 0.05). Lung density decreased on identical location according to increase of PEEP (p < 0.05). There was no significant difference between right and left lung density at sternal and dorsal recumbency and no significant difference of the dorsal, ventral, and lateral portions of lung density at the right and left recumbency under identical pressure. It is implied that during chest CT scan with 20 mmHg of positive end expiratory pressure with right or left lateral recumbency, canine lung density do not influenced by gravity or anatomic location.