• Title/Summary/Keyword: Diamond-like Carbon(DLC)

Search Result 317, Processing Time 0.033 seconds

Diamond Like Carbon Coating on WC Core Pin for Injection Molding of Zirconia Optical Ferrule (지르코니아 광페룰 사출성형용 WC 코아 핀의 Diamond Like Carbon 코팅)

  • Park, Hyun-Woo;Jeong, Se-Hoon;Kim, Hyun-Young;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.570-574
    • /
    • 2010
  • A diamond-like carbon (DLC) film deposited on a WC disk was investigated to improve disk wear resistance for injection molding of zirconia optical ferrule. The deposition of DLC films was performed using the filtered vacuum arc ion plating (FV-AIP) system with a graphite target. The coating processing was controlled with different deposition times and the other conditions for coating, such as input power, working pressure, substrate temperature, gas flow, and bias voltage, were fixed. The coating layers of DLC were characterized using FE-SEM, AFM, and Raman spectrometry; the mechanical properties were investigated with a scratch tester and a nano-indenter. The friction coefficient of the DLC coated on the WC was obtained using a pin-on-disk, according to the ASTM G163-99. The thickness of DLC films coated for 20 min. and 60 min. was about 750 nm and 300 nm, respectively. The surface roughness of DLC films coated for 60 min. was 5.9 nm. The Raman spectrum revealed that the G peak of DLC film was composed of $sp^3$ amorphous carbon bonds. The critical load (Lc) of DLC film obtained with the scratch tester was 14.6 N. The hardness and elastic modulus of DLC measured with the nano-indenter were 36.9 GPa and 585.5 GPa, respectively. The friction coefficient of DLC coated on WC decreased from 0.2 to 0.01. The wear property of DLC coated on WC was enhanced by a factor of 20.

Characterizations of Diamond-Like Carbon Films Prepared by the Plasma Enhanced Chemical Vapor Deposition Method (플라즈마 화학 기상 증착법으로 제작된 Diamond-Like Carbon 박막의 특성)

  • 김종탁
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.465-471
    • /
    • 1998
  • Diamond-like carbon (DLC) films have been prepared by means of the plasma enhanced chemical vapor deposition (PECVD) method using vertical-capacitor electrodes. The deposition rata in our experiment is relatively small compared with that in the conventional PECVD methods, which implies that the accumulation of the neutral $CH_n$ radicals on the substrates due to the gravitational movement may not contribute to the deposition of DLC films. The hardness and the transparency were measured as a function of the ratio of the partial pressure of $CH_4-H_2$ mixtures or the hydrogen contents of specimens. The coefficients of friction between DLC films and a $Si_3N_4$ tip measured by using a lateral force microscope are in the range of 0.024 to 0.033 which depend on the hydrogen contents in DLC, and the surface roughness depends mainly on the deposition rate. The optical gaps increase with increasing the hydrogen contents. DCL films deposited on Pt-coated Si wafers show the stable emission characteristics, and the turn-on fields are in the range of 11 to 20 $V/\mu$m.

  • PDF

Optical and mechanical properties of Diamond-like Carbon film with variation of carbon ratio (탄소비율에 따른 Diamond-like Carbon film의 광학적 및 기계적 특성)

  • Suh, Young-Kyo;Yun, Deok-Yong;Park, Yong-Seob;Cho, Hyung-Jun;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.333-334
    • /
    • 2007
  • Diamond-like carbon (DLC)박막은 높은 경도, 화학적 안정성, 높은 광 투과성을 가지고 있어, 공구강, 광학렌즈 및 플라스틱의 보호 코팅을 위해 응용되어진다. 본 연구에는 DLC 박막은 Silicon을 기반으로 하는 태양전지 반사 반지막으로 응용을 위해, 13.56 MHz RF 플라즈마 화학기상 증착 (RF-PECVD)법을 통해 합성되었다. DLC 합성 시 RF power는 150 W, 메탄 (CH4)가스의 유량은 6%~10% 조절되었다. 합성되어진 DLC 박막의 광학적 특성은 UV spectrometry, Ellipsometry를 사용하여 분석되었고, 경도는 Nano-indenter를 사용하여 측정되었다. 측정 결과 투과도와 굴절률 등의 광학적 특성은 탄소 조성비가 6%정도에서 가장 좋은 결과 값을 얻었으나, 물리적 특성인 경도는 탄소 조성비가 높을수록 증가하는 경향을 보였으며, Si기판과의 접착력은 32N 이상의 높은 값을 나타내었다. 결과로써, DLC 박막은 합성시 적절한 탄소 조성비를 통해 silicon을 기반으로 하는 태양전지 반사방지막으로 응용할 수 있다.

  • PDF

Investigation on field emission properties of diamond-like carbon thin film by variation of laser processing parameters (레이저 공정변수 변화에 따른 다이아몬드상 카본박막의 전계방출 특성분석)

  • Shim, Kyung-Suk;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1511-1513
    • /
    • 1999
  • In order to investigate the properties of diamond-like carbon(DLC) thin films depending on the deposition parameters, DLC thin films were systematically fabricated by pulsed laser deposition (PLD), DLC thin films have been shown advantageous field emission properties due to a negative electron affinity (NEA) and a low work function. At the atomic level. DLC is referred to the group of carbon materials with strong chemical bonding composition of $sp^2$ and $sp^3$ arrangements of atoms incorporated with an amorphous structure. The experiment was performed at substrate temperature in the range of room temperature to $600^{\circ}C$. The laser energy densiy was used to be in the range of $6J/cm^2$ to $20J/cm^2$, SEM, Raman, PL, XPS and field emission characteristics were used to investigate the DLC thin films.

  • PDF

Tribological properties of DLC films on polymers

  • Hashizume, T.;Miyake, S.;Watanabe, S.;Sato, M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.175-176
    • /
    • 2002
  • Our study is to search for tribological properties of diamond-like carbon (DLC) films as known as anti- wear hard thin film on various polymers. This report deals with the deposition of DLC films on various polymer substrates in vacuum by magnetron radio frequency (RF) sputtering method with using argon plasma and graphite, titanium target. The properties of friction and wear are measured using a ball-on-disk wear -testing machine. The properties of friction and wear have been remarkably improved by DLC coating. Moreover the composition of DLC films has been analyzed by using auger electron spectroscopy(AES). The wear rate of titanium-containing DLC film is lower than that of no-metal-containing DLC film.

  • PDF

A Study on Electro-Optical Characteristics of the Ion Beam Aligned TN Cell on the DLC Thin Film (DLC 박막을 이용한 Ion Beam 배향 TN 셀의 전기광학특성에 관한 연구)

  • 황정연;조용민;노순준;이대규;백홍구;서대식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.726-730
    • /
    • 2002
  • Electro-optical (EO) performances of the ion beam (IB) aligned twisted-nematic (TN)-liquid crystal display (LCD) with ion beam exposure on the new diamond-like carbon (DLC) thin film surface were investigated. A good voltage-transmittance (V-T) curve of the ion beam aligned TN-LCD with oblique ion beam exposure on the DLC thin film surface for 1 min was observed. Also, the fast response time of the ion beam aligned TN-LCD with oblique ion beam exposure on the DLC thin film surface for 1 min can be achieved. Finally, the residual DC voltage of the ion beam aligned TN-LCD on the DLC thin film surface is almost the same as that of the rubbing aligned TN-LCD on a polyimide (Pl) surface.

Liquid Crystal Alignment Effects using a DLC Thin Film (DLC 박막을 이용한 액정 배향 효과)

  • Jo, Yong-Min;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Rho, Soon-Joon;Lee, Dae-Kyu;Baik, Hong-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.346-349
    • /
    • 2001
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of diamond like carbon (DLC) thin film. A high pretilt angle of about $4^{\circ}$ was measured by ion beam(IB) exposure on the DLC thin film surface. A good LC alignment was observed by the IB alignment method on the DLC thin film surface at annealing temperature of $200^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of $220^{\circ}C$. Consequently, the high NLC pretilt angle and the good thermal stability of LC alignment can be achieved by the IB alignment method on the DLC thin film surface.

  • PDF

Conductive Characterization of DLC Thin Films Fabricated by Radio-Frequency Magnetron Sputtering

  • Cao, Nguyen Van;Kim, Tae-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.290-290
    • /
    • 2011
  • In this study Diamond-like carbon (DLC) films were deposited on p-type Si substrates using a Radio-Frequency magnetron Sputtering system. The DLC film was deposited by bombarding graphite target with a N2/Ar plasma mixture with various conditions: substrate, pressure, deposition time, temperature of substrate, power and ratio of gas mixture. The effect on the conduction and hardness of DLC thin films were investigated. The conduction of DLC films were measured by I-V measurement. In addition, Raman analysis was performed to study the chemical bonding structure. The hardness was measured by Nano indentation. Atomic Force Microscopy was used for determined surface morphology of DLC film.

  • PDF

Liquid Crystal Alignment Effects using a DLC Thin Film (DLC 박막을 이용한 액정 배향 효과)

  • 조용민;황정연;서대식;노순준;이대규;백흥구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.346-349
    • /
    • 2001
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of diamond like carbon (DLC) thin film. A high pretilt angle of about 4$^{\circ}$ was measured by ion beam(IB) exposure on the DLC thin film surface. A good LC alignment was observed by the IB alignment method on the DLC thin film surface at annealing temperature of 200$^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of 220$^{\circ}C$ . Consequently, the high NLC pretilt angle and the good thermal stability of LC alignment can be achieved by the IB alignment method on the DLC thin film surface.

  • PDF