• Title/Summary/Keyword: Diamond anvil cell

Search Result 32, Processing Time 0.023 seconds

Phase Transition Study on Graphite at Room Temperature (고압하에서 방사광을 이용한 흑연에 대한 연구)

  • Kim, Young-Ho;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.88-95
    • /
    • 1997
  • High pressure X-ray diffraction study was carried out on a polycrystalline graphite to investigate the phase transition(s) at room temperature. Energy dispersive X-ray diffraction method was employed using a Mao-Bell type diamond anvil cell with an Wiggler synchrotron Radiation at the National Synchrotron Light Source. Sodium chloride power was used as the internal pressure sensor for the high pressure determinations as well as the pressure medium for quasihydrostatic pressure environment. Graphite transforms into a hexagonal didose not agree with the previously reported observations and this phase persists when pressure is released down to 0.1 MPa. This result dose not agree with the previously reported observations and this discrepancy would be due to the kinetics in phase transition as well as the uniaxially oriented pressure field in the diamond anvil cell.

  • PDF

High Pressure Vibrational Study of $C_{70}$ Using Diamond Anvil Cell

  • Ahn, Hang-Sun;Jeon, Seung-Joon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.82-87
    • /
    • 1997
  • High pressure FTIR and Raman spectra of soild $C_{70}$ were measured at pressure up to 11 GPa and room temperature. The slope (dv/dp) of the frequency-pressure plots for several IR and Raman mode changed around 1.5 GPa, where a solid-solid transition might occur. In IR study, we can observe new mode appeared around 777$cm^{-1}$1 above 5.5 GPa which might indicate another solid-solid transition. Our study showed that this transition might be irreversible.

  • PDF

High pressure X-ray diffraction study on a graphite using Synchrotron Radiation (고압하에서 방사광을 이용한 흑연에 대한 연구)

  • Kim, Young-Ho;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.34-40
    • /
    • 1994
  • High pressure X-ray diffraction study was carried out on a graphite to investigate its compressibility as well as any possible phase transition to the hexagonal diamond structure at room temperature. Energy dispersive X-ray diffraction method was introduced using a Mao-Bell type diamond anvil cell with Synchrotron Radiation. Polycrystalline sodium chloride was compressed together with graphite for the high pressure determinations. Because of the poor resolution of the X-ray diffraction pattern of graphite, its compressibility was estimated to be almost same as that of NaCl by graphite (002) X-ray diffraction peak only. An observation of any new peak from a possible hexagonal diamond phase seems very unplausible for its definite identification based on the present data. Alternative approaches such as an Wiggler Radiation source as well as a Large Volume high pressure apparatus will be necessary for the detailed studies on a graphite in future.

  • PDF

An X-ray Diffraction Study on ZrH2 under High Pressures (고압하에서 ZrH2에 대한 X-선 회절 연구)

  • 김영호
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 1996
  • Polycrystalline ZrH2 in tetragonal crystal system has been compressed in a modified Bassett-type diamond anvil cell up to 36.0 GPa at room temperature. X-ray diffraction data did not indicate any phase transitions at the present pressure range. The pressure dependence of the a-axis, c-axis, c/a and molar volume of ZrH2 was determined at pressures up to 36.0 GPa. Assuming the pressure derivative of the bulk modulus (K0') to be 4.11 from an ultrasonic value on Zr, bulk modulus (K0) was determined to be 160Gpa by fitting the pressure-volume data to the Birch-Murnaghan equation of state. Same sample was heated at $500^{\circ}C$ at the pressure of 9.8 GPa in a modified Sung-type diamond anvil cell. Unloaded and quenched sample revealed that the original tetragonal structure transforms into a hexagonal structured phase with a zero-pressure molar volume change of ~115.5%.

  • PDF

Pressure Dependence of Acoustic Properties of Liquid Ethanol by using High-pressure Brillouin Spectroscopy

  • Ko, Jae-Hyeon;Jeong, Min-Seok;Lee, Byoung Wan;Kim, Jae Hyun;Ko, Young Ho;Kim, Kwang Joo;Kim, Tae Hyun;Kojima, Seiji;Ahart, Muhtar
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.279-286
    • /
    • 2013
  • Brillouin spectroscopy has been widely used for the investigation of acoustic properties of condensed matters in the hypersonic region. A high-pressure Brillouin spectrometer was set up by combining a diamond anvil cell and a tandem multi-pass Fabry-Perot interferometer. It was successfully applied to liquid ethanol, and the pressure dependence of the sound velocity, the refractive index and other acoustic properties were derived based on the measurements. The detailed optical setup and experimental procedure are described.

The Study on Phase Transition Pressure of Donor doped Pb(Zr0.52Ti0.48)O3 Ceramics with Diamond Anvil Cell (다이아몬드 엔빌 셀을 이용한 Donor doped Pb(Zr0.52Ti0.48)O3 세라믹스의 상전이 압력 연구)

  • Cho, Kyung-Ho;Ko, Young-Ho;Seo, Chang-Eui;Kim, Kwang-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.471-478
    • /
    • 2011
  • Investigations of crystal structure and phase transition of $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramics doped with A-site substitution impurity (La, Nd) or B-site substitution impurity (Sb, Nb) at 2 mol% concentration were carried out. X-ray diffraction patterns of impurities doped $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramics have been measured at pressures up to ~5 GPa with diamond anvil cell and synchrotron radiation. The patterns were obtained at room temperature using methanol-ethanol mixture as pressure-transmitting media. In order to refine the crystal structure, Rietveld analysis has been performed. The structures of impurities doped $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramics are tetragonal in space group P4mm at ambient pressure and are transformed into a cubic phase in space group Pm$\bar{3}$m as the pressure increases. In this study, when A-site substitution donor $La^{3+}$ or $Nd^{3+}$ ion was added to $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramics, the phase transition phenomena showed up at the pressure of 2.5~4.6 GPa, but when B-site substitution donor $Nb^{5+}$ or $Sb^{5+}$ ion was added to it, the phase transition appeared at relatively lower pressure of 1.7~2.6 GPa.

Compression Study on a Synthetic Goethite (합성 괴타이트에 대한 압축실험)

  • Kim, Young-Ho;Hwang, Gil-Chan;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.325-330
    • /
    • 2009
  • High pressure x-ray diffraction study was performed on a synthetic FeOOH-goethite to check out its compressibility at room temperature. Angular dispersive x-ray diffraction method was employed using a symmetrical diamond anvil cell with synchrotron radiation. Bulk modulus was determined to be 222.8 GPa under assumption of $K_{T'}$ of 4.0. This value is too high comparing with the previously published values from natural samples. It has been discussed the possible causes to incur its high bulk modulus value according to the production conditions.

High Pressure X-Ray Diffraction Study on a Goethite using Synchrotron Radiation (방사광을 이용한 괴타이트에 대한 고압 X-선 회절연구)

  • 김영호;이지은
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.75-81
    • /
    • 1997
  • High pressure X-ray diffraction study was carried out on a natural FeO(OH)-goethite to investigate its compressibility at room temperature. Energy dispersive X-ray diffraction method was employed using Mao-Bell type diamond anvil cell with Synchrotron Radiation. MgO powder was compressed together with goethite for the high pressure determinations. Bulk modullus was determined to be 147.9 GPa by the Birch-Murnaghan equation of state under assumption of K0' of 4. This value was subjected to compare with its structural analogs and related materials.

  • PDF