• Title/Summary/Keyword: Diamond Turning Process

Search Result 55, Processing Time 0.027 seconds

Improvement in Surface Roughness by Multi Point B Axis Control Method in Diamond Turning Machine (다이아몬드 터닝머신에서 다중점 B 축 제어 가공법을 통한 표면거칠기 향상)

  • Kim, Young-Bok;Hwang, Yeon;An, Jung-Hwan;Kim, Jeong-Ho;Kim, Hye-Jeong;Kim, Dong-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.983-988
    • /
    • 2015
  • This paper details a new ultra-precise turning method for increasing surface quality, "Multi Point B Axis Control Method." Machined surface error is minimized by the compensation machining process, but the process leaves residual chip marks and surface roughness. This phenomenon is unavoidable in the diamond turning process using existing machining methods. However, Multi Point B axis control uses a small angle (< $1^{\circ}$) for the unused diamond edge for generation of ultra-fine surfaces; no machining chipping occurs. It is achieved by compensated surface profiling via alignment of the tool radial center on the center of the B axis rotation table. Experimental results show that a diamond turned surface using the Multi Point B axis control method achieved P-V $0.1{\mu}m$ and Ra 1.1nm and these ultra-fine surface qualities are reproducible.

Measurement of Cutting Force in Diamond Turning Process (다이아몬드 터닝의 절삭력 측정용 tool holder를 이용한 미세절삭력 특성 연구)

  • 정상화;김상석;도철진;홍권희;김건희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.938-941
    • /
    • 2001
  • A tool holder system has been designed and builted to measure cutting forces in diamond turning. This system design includes a 3-component piezo-electric tranducer. Initial experiments with tool holder system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. In this research, tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. In addition, tool holder system is verified by vibration test using accelerometer. Many cutting experiments have been conducted on 6061-T6 aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool force. Cutting velocity has been determined to have negligible effects between 4 and 21㎧.(6) Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a sample model may not be sufficient to describe the forces produced in the diamond turning process.

  • PDF

Prediction the surface profile in the single point diamond turning (정밀 선삭가공에서의 표먼거칠기곡선 예측)

  • Yoon, Young-Sik;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.189-198
    • /
    • 1994
  • The achievable machining accuracy depends upon the level of the micro-engineering, and the today's accuracy targets are dimensional tolerances in the order of 10nm and surface roughness in the order of 1nm. Such requirements cannot be satisfied by the conventional machining processes. Single point diamond turning is the one of new techniques which can produce the parts with such accuracy limits. The aims of this thesis are to get a better understanding of the complex cutting process with a diamond tool and, consequently, to develope a predicting model of a turned surface profile. In order to predict the turned surface profile, a numerical model has been developed. By means of this model, the influence of the operational settings-the material properties of the workpiece, the geometry of the cutting tool and the dynamic behaviour of the lathe-and their influences via the cutting forces upon the surface roughness have been estimated.

  • PDF

Plating hardness and its effect to the form accuracy in shaping of corner cube on cu-plated steel plate using a single diamond tool (단결정 다이아몬드 공구에 의한 Corner Cube 가공 시, 형상정밀도에 미치는 동 도금층의 경도의 영향)

  • Lee, J.Y.;Kim, C.H.;Sea, C.W.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.64-69
    • /
    • 2014
  • This article presents machining experiments to assess the relationship between the profile accuracy and the workpiece hardness using a natural diamond tool on an ultra-precision diamond turning machine. The study is intended to secure a corner cube prism pattern for reflective film capable of high-quality outcomes. The optical performance levels and edge images of corner cubes having various hardness levels of the copper-coated layer on a carbon steel plate are analyzed. The hardness of the workpiece has a considerable effect on the profile accuracy. The higher the hardness of the workpiece, the better the profile accuracy and the worse the edge wear of the diamond tool.

A Study on the Precision Machining Characteristics of Aluminium 7075 and Silicon using Ultra-precision Turning Machine (초정밀 선반을 사용한 알루미늄 7075와 실리콘의 초정밀가공 특성연구)

  • Kim, Woo-Kang;Kim, Kun-Hee;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.27-32
    • /
    • 2006
  • This study aims to find the optimal cutting conditions, when are nonferrous metals(aluminum and silicon) are machined with diamond tool of diamond turning machine. Diamond turning machine has been widely used in manufacturing optical reflectors of nonferrous metals. Such as aluminium and copper are easy to be machined because of their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of this study is to find the optimum machining conditions for ductile cutting of silicon and aluminium.

  • PDF

Micro Patterning of Roll using Fast Tool Servo System (FTS시스템을 이용한 룰외 미세 패턴 가공)

  • Lu, Hong;Choi, Soo-Chang;Lee, Sang-Min;Park, Chun-Hong;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.22-26
    • /
    • 2011
  • The application of fast tool servo (FTS) for diamond turning has been investigated extensively. This paper focuses on the fabrication of the sinusoidal microstructure on a roller, which generated by a piezoelectric-assisted FTS. The influence of the machining parameters on the microstructure configuration was investigated. The experiment results point out that the configuration of the machined microstructure depends mainly on the spindle speed, the diameter of roller and the driving frequency of FTS. The calculation method of the microstructure dimension was reported. The turning test results show that the diamond tool can be moved up to 1kHz without any reinjected vibration in the machining and the peak-to-valley amplitude of the machined sinusoidal microstructure is about 12<${\mu}m$

Optical Application of Diamond Turning Process (광학 응용을 위한 다이아몬드 터닝 가공)

  • 이봉주;김대중;정상화;박순섭;김상석;김정호;유영문;김주하
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1881-1884
    • /
    • 2003
  • Diamond turning machines have, been used for the processing of surface like a mirror with the control scheme of minimizing shape error, Ultra-precision diamond fuming is applied to produce highly precision optical components required not only a high machining accuracy but also a good surface roughness. Al-6061 is widely used as optical parts such as laser reflector's mirror or multimedia instrument. In this study, thermal-imaged Al flat mirrors are fabricated by SPDT. The surface roughness 3.472 nm Ra, power 2 fringe(at 632.8 nm) and irregularity 1 fringe(at 632.8 nm) for form waviness of thermal-imaged Al flat mirror are very satisfied to the required specification in industry.

  • PDF

System identification and admittance model-based nanodynamic control of ultra-precision cutting process (다이아몬드 터닝 머시인의 극초정밀 절삭공정에서의 시스템 규명 및 제어)

  • 정상화;김상석;오용훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1352-1355
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surface. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamometer. Based on the parameter estimation of cutting dynamics and the admittance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

Admittance Model-Based Nanodynamic Control of Diamond Turning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 초정밀진동제어)

  • Jeong, Sanghwa;Kim, Sangsuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.154-160
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface cnotours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated dapth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in additn to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamoneter. Based on the parameter estimation of cutting dynamics and the admitance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

Ultra Precision Machining the Characteristics of IR Detection device HgCdTe (초정밀 가공기를 이용한 적외선 감지소자 HgCdTe의 절삭특성에 관한 연구)

  • Kim, Hyo-Sik;Yang, Sun-Choel;Kim, Myung-Sang;Kim, Geon-Hee;Lee, In-Je;Won, Jong-Ho;Cho, Byoung-Moo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.50-56
    • /
    • 2007
  • This study aims to find the optimal cutting conditions, when are IR Detection device HgCdTe is machined with diamond tool of diamond turning machine. Machining technique for HgCdTe with single point diamond turning tool is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. It has been found HgCdTe has more and more important applications in the field of modern optics. The purpose of our research is to find the optimum machining conditions for ductile cutting of HgCdTe and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials.

  • PDF