• Title/Summary/Keyword: Diamond Tool Wear

Search Result 85, Processing Time 0.022 seconds

Drilling Characteristics and Modeling of Diamond Core Drilling Processes (다이아몬드 코어드릴 공정의 구멍가공 특성과 모델링)

  • Yoon, Kwan-Woo;Chung, Sung-Chong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.95-103
    • /
    • 2008
  • Diamond core drills are applied to drill difficult-to-cut materials. This paper proposes basic understanding of ceramic drilling mechanics and characteristics of main factors affecting tool life, tool wear, cutting force, and chipping thickness. In contrast to conventional drilling, the core drilling process make deep grooves on the workpiece. One difficulty of it is the evacuation of chips from the drilled groove. As the drilling depth increases, an increased amount of chips tend to cluster together and clog the groove. Eventually severe wear develops and diamond grits are separated from the drill body. To relieve the clogging problem and to evacuate chips from the groove easily, the helical drilling process is applied for the core drilling process. To analyze drilling characteristics and derive optimal drilling conditions, tool life, tool wear, cutting force, and chipping thickness are quantified through the monitoring system and the Taguchi method. Mathematical models for the tool life and chipping thickness are derived from the response surface method. Optimal drilling database has been constructed through the experimental models.

Diamond micro-cutting of the difficult -to -cut materials using Electrolysis (전기분해를 이용한 난삭재의 다이아몬드 미세가공)

  • 손성민;손민기;임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.951-954
    • /
    • 2000
  • This paper presents a new cutting method, i.e. diamond cutting, aided by electrolysis, in order to cut ferrous materials with diamond tools. Diamond cutting is widely applied in manufacturing ultraprecision parts such as magnetic disk, polygon mirror, spherical/non-spherical mirror and copier drum, etc. because of the diamond tool edge sharpness. In general, however, diamond cutting cannot be applied to cutting steels, because diamond tools wear excessively in cutting iron based materials like steel due to their high chemical interaction with iron in high temperature. In order to suppress the diffusion of carbon from the diamond tool and to reduce increase of cutting force due to size effect, we attempt to change chemically the compositions of iron based materials using electrolysis in a limited part which will be soon cut. Through experiments under several micro-machining and electrolysis conditions, cutting using electrolysis, compared to conventional cutting, was found to result in a great decrease of the cutting force, a better surface and much less wear tool.

  • PDF

A Study on the Wear Monitoring Technique for Diamond Core Drill (다이아몬드 코어 드릴의 마멸 검출에 관한 연구)

  • 유봉환
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.2
    • /
    • pp.38-45
    • /
    • 1995
  • The diagnosis and monitoring system of abnormal cutting condition is necessary to realize precision machining proces and factory automation, which are final goal of metal cutting in order to develop this system, theimage processing technique has been investigated in machining process. In theis paper, the measurement system of tool wear using computer vision is designed to detect the wear pattern by non-contact and direct method and get the realiable wear information about cutting tool. We measured the area of the side and front part of the diamond core dril which is used in 40kHz ultrasonic vibration machine.

  • PDF

Development of Polycrystalline Diamond Tungsten Carbide Combination Circular Saw and Comparison of Tool Wear (PCD 초경 복합 원형 톱 개발과 공구마모 비교)

  • Joo, Chang-Min;Park, Yoon-Ok;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.48-56
    • /
    • 2021
  • Tungsten carbide (WC) circular saws have been widely used to cut plywood. Recently, expensive polycrystalline diamond (PCD) were adopted to extend the tool life of circular saws. This study developed a PCD-WC combination circular saw and compared its performance with that of existing WC and PCD saws. Flank wear of WC saw blades and edge chipping of rectangular PCD was observed during the experiments. The PCD-WC saw replaced half of the chamfered teeth with PCD and applied tough WC for all rectangular teeth. In the experiments, edge chipping was not observed in rectangular WC teeth and the flank wear of chamfered teeth was decreased compared with that of conventional circular saws.

Machinability in Micro-precision Machining of Ni-Plated Layer by Diamond Tool (다이어몬드 공구를 이용한 Ni 도금층의 정밀미세가공 시 절삭성)

  • Kim, Seon-Ah;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.636-641
    • /
    • 2009
  • Recently, expansion of micro-technology parts requires micro-precision machining technology. Micro-groove machining is important to fabricate micro-grating lens and many micro-parts such as microscope lens, fluidic graphite channel etc. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. But, mechanical micromachining methods using single crystal diamond tools can reduce these problems in chemical process. For this reason, microfabrication methods are expected to be very efficient, and widely studied. This study deals with machinability in micro-precision V-grooves machining of nickel plated layer using non-rotational single crystal diamond tool and 3-axis micro stages. Micro V-groove shape, chip formation and tool wear were investigated for the analysis of machinability of Ni plated layer.

  • PDF

Effect of Ti Coated Diamond Grit on Performance of Diamond Tool (티타늄 코팅 된 다이아몬드 지립이 다이아몬드 공구의 성능에 미치는 영향)

  • 임동필;임대순;민언기;임종관
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.242-246
    • /
    • 1997
  • Diamond grit was coated with Ti by RF Sputtering to investigate the effect of coated diamond particles on performance of diamond impregnated saw. Coated and uncoated powders were separately mixed with 70Co-30W(wt %) powders by conventional milling technique. Hot pressing was carried out to make specimens. The wear test were carried out with these two types of diamond impregnated specimens. It was demonstrated that Ti coating was effective in improving the ability of grit retention and thus enhanced the tribological performance of diamond tool.

  • PDF

Effect of Ti Coated Diamond Grit on Performance of Diamond Tool (티타늄 코팅된 다이아몬드 지립이 다이아몬드 공구의 성능에 미치는 영향)

  • 임동필;임대순;민언기;임종관
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.102-107
    • /
    • 1997
  • Diamond grit was coated with Ti by RF Sputtering to investigate the effect of coated diamond particles on performance of diamond impregnated saw. Coated and uncoated powders were separately mixed with 70Co-30W powders by conventional milling technique. Hot pressing was carried out to make specimens. The wear test were carried out with these two types of diamond impregnated specimens. It was demonstrated that Ti coating was effective in improving the ability of grit retention and thus enhanced the tribological performance of diamond tool.

Tool-Wear Characteristics of the Ceramic, CBN and Diamond Tools in Turning of the Presintered Low Purity Alumina (저순도 알루미나 예비소결체 선삭시의 세라믹, CBN 및 다이아몬드 공구의 마멸 특성)

  • Lee Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.80-88
    • /
    • 2006
  • In this study, unsintered and presintered low purity alumina ceramics were machined with various tools to clarify the machinability and the optimum cutting conditions. The main conclusions obtained were as fellows. Machined with ceramic tool, the ceramics presintered at the temperature range of $1000\~1100^{\circ}C$ showed the best machinability due to the adhesion formed in weared surface within a certain cutting speed range. In the above combination and conditions, the ceramic tool showed the highest productivity through all experiments. The life of CBN tool was longer in machining of the ceramics presintered at $1000^{\circ}C$ than in the case of that presintered at $600^{\circ}C$, but the diamond tool showed adverse tendency. In machining of the ceramics presintered at $1000^{\circ}C$, the ceramic tool exhibits the longest tool life in high speed, the tool lives became extremely worse in the order of CBN tool and diamond tool. However, in the case of the ceramics presintered at $600^{\circ}C$, the diamond tool shows the longest tool life, the tool lives was much worse in the order of CBN tool and ceramic tool.

Analysis of Environmental Factors Affecting the Machining Accuracy (가공정밀도에 영향을 미치는 환경요소 분석)

  • Kim, Young Bok;Lee, Wee Sam;Park, June;Hwang, Yeon;Lee, June Key
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, to analyze the types of surface morphology error according to factors that cause machining error, the experiments were conducted in the ultra-precision diamond machine using a diamond tool. The factors causing machining error were classified into the pressure variation of compressed air, external shock, tool errors, machining conditions (rotational speed and feed rate), tool wear, and vibration. The pressure variation of compressed air causes a form accuracy error with waviness. An external shock causes a ring-shaped surface defect. The installed diamond tool for machining often has height error, feed-direction position error, and radius size error. The types of form accuracy error according to the tool's errors were analyzed by CAD simulation. The surface roughness is dependent on the tool radius, rotational speed, and feed rate. It was confirmed that the surface roughness was significantly affected by tool wear and vibration, and the surface roughness of Rz 0.0105 ㎛ was achieved.

A Study on the Drilling Characteristics of Carbon Fiber Epoxy Composite Materials by Diamond Grit Electroplated Drills (다이아몬드 입자 전착드릴에 의한 탄소섬유 에폭시 복합재료의 드릴링 특성에 관한 연구)

  • Kim, Hyeong-Chul;Kim, Ki-Soo;Hahm, Seung-Duck;Kim, Hong-Bea;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.27-38
    • /
    • 1995
  • For solving troubles happened during the drilling process with carbon fiber epoxy composite materials(CFRP) by using HSS drill, a few types of diamond gift electroplated drills are manufactured, and machinability of these drills is experimented with a variety of cutting speed and feed rate. These drills have some advantages of good wear resistant and the conception of grinding process. As a result, using of these drills improves both troubles being caused by tool wear and damage of exit surface depending on fiber stacking angle. It is desirable that cutting conditions for the cutting thickness per revolution must be set under 0.01mm when the size of a diamond grit is # 60 .approx. 80.

  • PDF