• 제목/요약/키워드: Diamond Abrasive

검색결과 89건 처리시간 0.027초

강 표면의 다이아몬드/몰리브데늄/니켈 복합층의 생성 (Formation of Diamond/Mo/Ni Multi-Layer on Steel Substrate)

  • Lee, H.J.;J.I. Choe;Park, Y.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2002년도 춘계학술발표회 초록집
    • /
    • pp.37-37
    • /
    • 2002
  • Diamoncl/Mo/Ni multi-layers on SKH-51 steel substrate was prepared to improve the abrasive wear resistance of a tool and die by a commercial chemical vapor deposition unit and electro-plating. The diamond after 7 hour deposition had cuba-octahedral structure with 2~5$\mu\textrm{m}$ grains. The existence of non-ferrous metals such as chromium, nickel and molybdenum between diamond and SKH-51 substrate results in forming higher quality of diamond layer by retarding carbon diffusion in the diamond layer during deposition, and also improving hardness and wear resistance. Surface cracks on the film was sometimes observed by the difference of by the thermal expansion coefficients between the steel substrate and the deposited layers during cooling.

  • PDF

CBN 단입자의 연삭특성에 관한 연구 (A study on grinding characteristics of CBN single abrasive grain)

  • 팽현진;손명환
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1533-1541
    • /
    • 1990
  • 본 연구에서는 초입자인 CBN단입자와 기존의 연삭입자인 SiC단입자를 연삭입 자로 하고, 경강과 연강의 공작물재료를 단입자로 연삭했을 때의 표면거칠기 특성을 단입자의 절삭현상으로부터 비교 구명하고 CBN입자에 의한 연삭의 경우가 표면거칠기 가 악화하는 원인을 구명함으로써 이것을 토대로 하여 CBN입자의 실용 보편화의 자료 로 삼고자 하였다.

Assessment of Subsurface Damage in Ultraprecision Machined Semiconductors

  • Lucca, D.A.;Maggiore, C.J.;Rhorer, R.L.;Wang, Y.M.;Seo, Y.W.
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.156-161
    • /
    • 1995
  • The subsurface damaged layer in ultraprecisison machined single crystal Ge was examined by ion channeling. Single crystal Ge surfaces were prepared by chemo-mechanical polishing, mechanical polishing with 1/4 gm diamond abrasive, single point diamond turning and ultraprecision orthogonal flycutting. The extent of subsurface lattice disorder was compared to the crystal's orginal surface quality. Ion channeling is seen to be useful for quantitative measure of lattice disorder in finely finished surfaces.

다이아몬드 CVD 증착에 의한 세라믹 CMP Conditioner의 Conditioning 거동 (The Conditioning Behaviors of Diamond CVD Deposited Seramic CMP Conditioner)

  • 강영재;엄대홍;박점용;박진구;고숭;명범영;이상익;권판기
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.270-273
    • /
    • 2002
  • Conditioning은 CMP(Chemical Mechanical Planarization)에 필수적인 공정중의 하나이다. Conditioning의 목적은 removal rate와 uniformity를 CMP 공정 중에서 일정하게 유지시키는데 목적이 있다. 예전의 conditioning disks는 stainless steel substrate 위에 diamond 입자를 올리고 Ni전기도금을 결합시켜서 사용하였다. 그러나, CMP 공정 중에 Ni의분해로 인한 금속의 오염과 diamond abrasive의 분리로 인하여 scratch 문제가 발생하였다. 이 문제를 해결하기 위해서 ceramic substrate와 그것을 정밀 가공하는 기술을 응용함으로써 본래의 conditioning disks가 가지고 있는 diamond 입자의 분리와 metals 분해의 문제를 해결할 수 있게 되었다.

  • PDF

다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성 (Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

다이아몬드 가공을 위한 연마판의 제조 및 플라즈마 용사 코팅층의 열처리 거동 (Heat-treatment of Diffusional Behaviors of Plasma Spray Coated Layer for Fabrication of Abrasive Plates for Diamond)

  • 최광수;양승아;이종원;김민규;이승준;박준식
    • 열처리공학회지
    • /
    • 제30권6호
    • /
    • pp.264-270
    • /
    • 2017
  • 본 연구에서는 다이아몬드의 기계적 화학적 연마(MCP) 에 주목하여 기존에 알려진 다이아몬드 가공연마판을 주물 또는 파우더 소결 방식이 아닌 플라즈마 열분사 기법을 통하여 경제성이 높게 제작하고 이를 상용화 하고자 하였다. 저렴한 주철 모재에 연성이 높고 밀착성이 우수한 Al을 중간 코팅층으로 코팅하고, 상부 코팅층으로 다이아몬드와 화학반응을 하게 되는 Fe-Cr-Ni 및 Ti 코팅층을 플라즈마로 코팅하여 다이아몬드 연마판을 제작하였다. 또한, 물리적인 코팅방법인 플라즈마 열분사 코팅층의 밀착력을 개선 하기 위하여 $550^{\circ}C$ 6시간 동안 열처리를 수행하고 모재와 Al 코팅층 사이에 약 $5{\mu}m$ 정도의 확산층을 형성하여 밀착력을 개선할 수 있었다.

강체인 구와 DLC 코팅면 사이의 압입 및 미끄럼 접촉해석: 지지층 두께의 영향 (Indentation and Sliding Contact Analysis between a Rigid Ball and DLC-Coated Steel Surface: Influence of Supporting Layer Thickness)

  • 이준혁;박태조
    • Tribology and Lubricants
    • /
    • 제30권4호
    • /
    • pp.199-204
    • /
    • 2014
  • Various heat-treated and surface coating methods are used to mitigate abrasion in sliding machine parts. The most cost effective of these methods involves hard coatings such as diamond-like carbon (DLC). DLC has various advantages, including a high level of hardness, low coefficient of friction, and low wear rate. In practice, a supporting layer is generally inserted between the DLC layer and the steel substrate to improve the load carrying capacity. In this study, an indentation and sliding contact problem involving a small, hard, spherical particle and a DLC-coated steel surface is modeled and analyzed using a nonlinear finite element code, MARC, to investigate the influence of the supporting layer thickness on the coating characteristics and the related coating failure mechanisms. The results show that the amount of plastic deformation and the maximum principal stress decrease with an increase in the supporting layer thickness. However, the probability of the high tensile stress within the coating layer causing a crack is greatly increased. Therefore, in the case of DLC coating with a supporting layer, fatigue wear can be another important cause of coating layer failure, together with the generally well-known abrasive wear.

유리 재료의 헬리컬 스캔 연삭 조건 실험 (Experiments on the Grinding Conditions for Helical Scan Grinding of a Glass Material)

  • 이대욱;오창진;이응석;김옥현;김성청
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.165-170
    • /
    • 2001
  • In normal grinding abrasive particles of a grinding wheel rotate on planes parallel to the direction of workpiece fred. which may induce continued scratch lines on ground surface as the workpiece feeds. Instead in helical scan grinding the planes make an angle, called a helical angle, with the feeding direction. Thus scratch lines produced by abrasive particles per one revolution are discontinued which implies that the generation of scratch lines are suppressed by the helical scan grinding. In this study some experimental works have been done on the helical scan grinding of glass to find the effects of grinding conditions on the surface roughness and estimate the optimal grinding conditions. The helical angle, fred rate, material removal rate and the wheel speed are taken as factors for three kinds of grinding wheels i.e., coarse(#140 mesh), medium(#400) and fine(#800) diamond wheels. The experiments are scheduled by Taguchi technique and ANOVA has been carried out for the interpretation of the results. As a result of this study effects of the factors are verified quantitatively showing that the major factors are changed according to the wheel's mesh size and the helical angle is one of the influencing factors on the surface quality.

  • PDF

세라믹 성형체의 미소구멍 가공 시 다이아몬드 입자 전착 드릴의 공구 수명 예측 모델 (Model for predicting tool life of diamond abrasive micro-drills during micro-drilling of ceramic green bodies)

  • 이학구;이대길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.593-598
    • /
    • 2003
  • Ceramic plates containing many micro-holes are used in diverse applications such as MCP (Microchannel Plate). catalytic converters, filters, electrical insulators in integrated circuits, and so on. One of the efficient methods for machining many holes in ceramic plates is wet drilling of ceramic green bodies followed by sintering them. Since the strength of ceramic green bodies is much lower than the strength of sintered ceramic plate, ceramic green bodies can be drilled with high feed rate. The axial force during micro-drilling of ceramic green bodies increases rapidly at high feed rate, which induces the crack in workpiece. Therefore, the tool lift of micro-drill with respect to feed rate may be determined by the predicting increase of axial force. In this work, the axial force during micro-drilling was calculated using the chip flow model on the micro-drill tip. from which the tool life of diamond abrasive micro-drill during micro-drilling of ceramic green bodies was calculated.

  • PDF

WC-Co의 고품위 평면 연삭가공 (Surface grinding of WC-Co with high quality)

  • 허성중;강재훈;김원일
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.42-55
    • /
    • 1994
  • Presently, abrasive processing is on eof several methods for cutting and grinding brittle materials, and high quality in dimensional accuracy and surface roughness are often required as a structural components, therefore most of them has to be ground. In manufacturing of tungsten-carbide components, grinding by diamond wheel is usually adopted in order to provide configurational and dimensional accuracy to the components. The present study proposes the experi- mental research of optimum condition to the high quality surface grinding of the WC-Co material using diamond abrasive wheel in order to minimize the damage on the ground surface and to pursue the precise dimension by conventional grinding machine. Brief investigation is carried out to decrease the dressing is constant, theoretical grinding effect such as machining precision is changed according to the speed of workpiece. Accordingly, normal and tangential grinding forces, which are Fn, Ft were analyzed for the machining processes of WC-Co material to obtain optimum grinding conditions, 3-point bending test is carried out to check machining damage on the ground surface layer, which is one of sintered brittle materials.

  • PDF