• Title/Summary/Keyword: Diametral compression test

Search Result 6, Processing Time 0.024 seconds

축변환 구성방정식을 이용한 암석 이방성 탄성계수 산정

  • 김영수;이재호;허노영;박영화;최정호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.729-736
    • /
    • 2000
  • For nonhomogeneous and anisotropic rocks such as schist, shale, etc, a method to determine the anisotropic elastic constants was proposed. Many authors have investigated in detail the behavior elastic constants of anisotropy rocks(Pinto 1970, Amadei 1983, 1992, Amadei & Savage 1989). They concluded that equations of elastic constants E$_1$, E$_2$ and G$_2$ can be derived from the measured strains in arbitrary three directions. And, modulus of elasticity varies according to the inclination of discontinuity in specimens. If we attach three strain gages in accordance with the directions of anisotropy on the rock specimen under uni-axial compression and diametral compression tests, anisotropy elastic constants can be determined by these equations. With this method, the degree of anisotropy will be easily evaluated by simple laboratory test. This paper presents the results of elastic constants due to the angle of bedding planes of anisotropic rock, such as shale, in uni-axial compression and diametral compression tests

  • PDF

Application of Fracture Toughness for Scaled Model Test (파괴인성의 축소모형실험 적용 연구)

  • Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.87-97
    • /
    • 2020
  • Fracture toughness of rock is a constant that can indicate the initiation and propagation of cracks due to blasting, excavation, etc. Scaled model tests have been applied to the behavior of tunnels and the stability of limestone mines. Through the scaled model, damaged zone evaluation due to blasting is also carried out, and the scale factor is not applied to the failure-related factors. In this study, DCT (diametral compression test) and finite element method ATENA2D numerical analysis results were compared to determine whether the scale factor could be applied to the fracture toughness of rock. The theoretical values of the scale factor applied to the fracture toughness of the rock and the DCT test results and the numerical results are 0.21~0.46, 0.40, and 0.99MPa ${\sqrt{m}}$ respectively, so these three values should be considered when determining scale factor. It is necessary to derive a suitable scale factor in consideration of the length, time, and mass to which the scale factor is applied, as well as the values of the scale factor of major design factors such as uniaxial compressive strength and density.

Measurement of Tensile Strength by Diametral Compression of Ring-type Specimen (원환형 시험편을 이용한 간접인장실험에 관한 연구)

  • 이기락;김종우
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.221-229
    • /
    • 1997
  • Disc-type and ring-type specimens of four different materials were tested to investigate the tensile characteristics and their brief results are presented. Materials tested were marble, granite, cement mortar and plaster. Unizxial tensile strengths are compared with Brazilian and ring test strengths. It was found that Brazilian strengths were usually greater than uniaxial tensile strengths and affected by loading rates. In the ring tests, tensile strengths were generally found to be decreased as relative hole radius being increased. Ring test strengths, however, converged to some value in r$\geq$0.45 of marble, r$\geqq$0.29 of cement mortar and r$\leq$0.5 of plaster specimens. In such range of r, furthermore, transverse cracking of specimens were observed.

  • PDF

Mathematical Morphology Guided Automatic Unwrapping Isoclinic Phase Map in White Light Photoelasticity

  • Liu, Xiaomeng;Dai, Shuguang
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.643-648
    • /
    • 2015
  • By comparing the results calculated by atan() and atan2() functions, the correctly estimated region of isoclinic phase map is determined using morphological techniques. The isoclinic phase map is automatically unwrapped in the true phase range -π/2 to π/2. Demonstrations of the method on a disc and a ring under diametral compression are performed. Test results compare well with the theoretical results. Furthermore, the influences of principal stress direction and the range of isoclinic phase upon stress separation are discussed.

Acrylamide Polymerization on ceramic Powders(I) : The Process Control of Si2N4 Gelcasting by Polymerization of Acrylamicde (세라믹분체 표면에서 아크릴아마이드 중합(제1보) : 아마이드 고분자중합에 의한 질화규소 겔캐스팅 공정제어)

  • 류병환;김은영;이재도
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.178-185
    • /
    • 1999
  • For the process control of silicon nitride gelcasting, the composition effect of acryamide system on the viscosity of slip and mechanical property of gelcast green body were investigated. The slip was prepared by ball milling of silicon nitride suspension prepared with acrylamide monomer and polyelectrolyte dispersant after premixing them by attritor. The slip mixed with initiator was vacuum deaired and cast into molds, and then polymerized. The consolidated green body was obtained by drying the gelated slip. The viscosity measument and the diametral compression test was done to evaluate the rheological behaviro of slip and mechanical property of gelcast body, respectively. Experimental results showed that the high solid loading of silicon nitride slip was obtained up to 46 vol% with a low viscosity. The mechanical property of gelcast body mainly increased with increasing the concentration of monomer. The gelcast body was machinable above the ∼3 MPa of tensile strength. The relative density of pressured-sintered body was 98.5% at 1760$^{\circ}C$, 3 h.

  • PDF

Fabrication of Y-TZP/Ce-TZP Multilayer Composites Using Slip Casting(II) (슬립주입에 의한 Y - TZP/Ce-TZP 다층 복합체의 제조(II))

  • Kim, Min-Ju;Lee, Yun-Bok;Kim, Yeong-U;Jeon, Byeong-Se;Park, Hong-Chae
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.677-683
    • /
    • 2000
  • Three- and five-layer 3Y-YZP/12Ce- TZP composites prepared by a slip casting method have been char­acterized in terms of mechanical properties. The fracture strength of mutilayer c$\alpha$nposites determined in a diametral compression test was 327~534 MPa. Although the indentation strength of the materials was generally reduced with i increasing Vickers indentation load up to 300 N, the damage resistance of multilayer composites was superior com­pared to monolithic layer TZP material. The four-point bend strength of the layered material remained at the values of 620~674 MPa after indentation with a load of 49 N, while that of the monolithic TZP material was 129~339 MPa. The microindentation toughness of the multilayer material was $7.7~13.1\;MPa{\cdot}m^{1/2}$.

  • PDF