• 제목/요약/키워드: Diameter of water drop

검색결과 122건 처리시간 0.032초

Efficacy of various cleansing techniques on dentin wettability and its influence on shear bond strength of a resin luting agent

  • Munirathinam, Dilipkumar;Mohanaj, Dhivya;Beganam, Mohammed
    • The Journal of Advanced Prosthodontics
    • /
    • 제4권3호
    • /
    • pp.139-145
    • /
    • 2012
  • PURPOSE. To evaluate the shear bond strength of resin luting agent to dentin surfaces cleansed with different agents like pumice, ultrasonic scaler with chlorhexidine gluconate, EDTA and the influence of these cleansing methods on wetting properties of the dentin by Axisymmetric drop Shape Analysis - Contact Diameter technique (ADSA-CD). MATERIALS AND METHODS. Forty coronal portions of human third molar were prepared until dentin was exposed. Specimens were divided into two groups: Group A and Group B. Provisional restorations made with autopolymerizing resin were luted to dentin surface with zinc oxide eugenol in Group A and with freegenol cement in Group B. All specimens were stored in distilled water at room temperature for 24 hrs and provisional cements were mechanically removed with explorer and rinsed with water and cleansed using various methods (Control-air-water spray, Pumice prophylaxis, Ultrasonic scaler with 0.2% Chlorhexidine gluconate, 17% EDTA). Contact angle measurements were performed to assess wettability of various cleansing agents using the ADSA-CD technique. Bond strength of a resin luting agent bonded to the cleansed surface was assessed using Instron testing machine and the mode of failure noted. SEM was done to assess the surface cleanliness. Data were statistically analyzed by one-way analysis of variance with Tukey HSD tests (${\alpha}$=.05). RESULTS. Specimens treated with EDTA showed the highest shear bond strength and the lowest contact angle for both groups. SEM showed that EDTA was the most effective solution to remove the smear layer. Also, mode of failure seen was predominantly cohesive for both EDTA and pumice prophylaxis. CONCLUSION. EDTA was the most effective dentin cleansing agent among the compared groups.

디젤기관의 배기 배출물에 미치는 스크러버형 EGR 시스템 재순환 배기의 영향에 관한 연구 (A Study on the Effect of Recirculated Exhaust Gas with Scrubber EGR System upon Exhaust Emissions in Diesel Engines)

  • 배명환;하정호
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1247-1254
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of $NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The simultaneous control of $NO_x$ and soot emissions in diesel engines is targeted in this study. The EGR system is used to reduce $NO_x$ emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate, and the exhaust oxygen concentration measured are used to analyse and discuss the influences of EGR rate on $NO_x$ and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions are decreased and soot emissions are increased owing to the drop of intake oxygen concentration and exhaust oxygen concentration, and the rise of equivalence ratio as the EGR rate rises.

박용 디젤기관의 $NO_x$ 및 매연 배출물에 미치는 스크러버형 EGR 시스템 재순환배기의 영향에 관한 연구 (A Study on Effects of Recirculated Exhaust Gas upon $NO_x$ and Soot Emissions of a Marine Diesel Engine with Scrubber EGR System)

  • 배명환;하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.70-78
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of ;$NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The purpose of the present study is to develop the EGR control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions, and a novel diesel soot removal apparatus with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector is made up 144 nozzles with 1.0mm in diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration obtained by the intake air flow and the oxygen concentration in the recirculated exhaust gas, and the exhaust oxygen concentration measured in exhaust manifold are used to analyse and discuss the influences of EGR on NOx and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions decrease and soot emissions increase owing to the drop of intake oxygen concentration and exhaust oxygen concentration as EGR rate rises. Also, one can conclude that it is sufficient for the scrubber EGR system with a novel diesel soot removal apparatus to reduce $NO_x$ emissions, but not to reduce soot emissions.

  • PDF

균질 2상 유동에 놓인 관군에 작용하는 감쇠비에 대한 실험적 연구 (Experimental Study about Two-phase Damping Ratio on a Tube Bundle Subjected to Homogeneous Two-phase Flow)

  • 심우건;닥단방즈락츠
    • 대한기계학회논문집B
    • /
    • 제41권3호
    • /
    • pp.171-181
    • /
    • 2017
  • 2상 횡 유동은 응축기, 증발기와 원자력의 증기 발생기와 같은 열교환기의 튜브와 셀 사이에 존재한다. 공기/물의 2상 유동에 놓인 관군에 작용하는 항력을 실험적으로 평가하였다. 2상 유동에 놓인 관군은 정사각형 배열이다. 피치 직경 비는 1.35이었고, 실린더의 직경은 18 mm이다. 관군에 유동방향으로 작용하는 항력을 측정하여 항력계수와 2상 유동 감쇠비를 계산하였다. 2상 유동 감쇠비는 균질 2상 유동의 이론식을 사용하여 구하여 실험의 결과와 비교하였다. 압력과 항력의 상관계수를 실험결과를 고려하여 평가하였다. 상관계수는 이론적으로 항력을 계산할 때에 사용된다. 질량유량을 증가할수록 측정된 항력으로부터 구한 항력계수와 감쇠비가 균질 유동의 이론적 결과와 잘 일치함을 보이고 있다. 결과적으로 충분히 큰 질량 유량의 기포 유동인 경우에는 감쇠비를 균질 유동에 근거한 이론식으로 계산할 수 있다.

잉크젯 프린팅을 이용한 HepG2 세포 담지 콜라겐 마이크로스피어 제작 (Fabrication of HepG2 Cell Laden Collagen Microspheres using Inkjet Printing)

  • 최진호;김영호;로익 자코 데콩브;유르겐 부르거;김규만
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.743-747
    • /
    • 2014
  • In this study, drop-on-demand system using piezo-elecrtric inkjet printers was employed for preparation of collagen microspheres, and its application was made to the HepG2 cell-laden microsphere preparation. The collagen microspheres were injected into beaker filled with mineral oil and incubated in a water bath at $37^{\circ}C$ for 45 minutes to induce gelation of the collagen microsphere. The size of collagen microsphere was $100{\mu}m$ in diameter and $80{\mu}m$ in height showing spherical shape. HepG2 cells were encapsulated in the collagen microsphere. The cell-laden microspheres were inspected by the microscopic images. The encapsulation of cells may be beneficial for applications ranging from tissue engineering to cell-based diagnostic assays.

동축형 인젝터의 미립화 특성 (Atomization Characteristics of shear coaxial twin fluid injector)

  • 한재섭;강경택;김유;김선진
    • 한국분무공학회지
    • /
    • 제5권4호
    • /
    • pp.40-46
    • /
    • 2000
  • To understand the basic the structure of the spray field and to obtain the initial conditions for computational models for shear coaxial twin-fluid injectors. the atomization characteristics under different flow and geometric conditions were examined. The spray characteristics such as SMD, mean axial and radial velocities, Dia. of droplets and volume flux with a P.D.P.A. Water and nitrogen gas under atmospheric conditions were used as a test fluids. The drops produced by shear coaxial injectors continue to disintegrate along the spray axis and decrease their sizes. SMD was the maximum at the spray center of spray and decreased with increasing radial distance. The results of this parametric study showed that SMD decreased with increasing gas injection velocity as well as with decreasing liquid injection mass flow rate, The relative velocity between gas and liquid flow played a significant role resulted in decreasing SMD and in spreading the spray. Recessing the liquid orifice resulted decreasing SMD and a spreading the spray. Recess of liquid orifice by 5.0mm showed best atomization characteristics in this experiment. Although drop diameter changes, shear coaxial injector sprays had constant velocity and exhibited a high degree of radial symmetry.

  • PDF

EWT를 고려한 지중열교환기 파이프 선정에 관한 연구 (A Study on Selection of Pipe Materials Considering EWT)

  • 류형규;정민호;이병석;최현준;최항석
    • 한국지열·수열에너지학회논문집
    • /
    • 제10권2호
    • /
    • pp.13-18
    • /
    • 2014
  • This paper proposes an optimum pipe material (PVC vs. PE) design & selection for open loop ground heat exchangers. Heat exchange efficiency and/or workability, and the need for trench insulation were investigated by comparing EWT (cooling mode) of each system. CFD simulations for the PVC and PE pipe with the same inner diameter show similar EWT. This is because the PVC pipe has a small thickness but a low thermal conductivity as compared to the PE pipe, and thus these two properties tend to offset each other. However, a hypothetically insulated pipe led to a meaningful drop of EWT. This means pipe insulation is of importance in performance of ground heat exchangers. From analyzing climate data and system operation, it is not advantageous to insulate trench pipes due to construction difficulties and ground temperature characteristics that are seasonally varied.

세 가지 유형 와류 분사기들의 미립화 특성 (Atomization Characteristics of Three Types of Swirl Injectors)

  • 정하동;안종현;안규복
    • 한국분무공학회지
    • /
    • 제28권2호
    • /
    • pp.75-88
    • /
    • 2023
  • In this paper, the atomization characteristics of bi-swirl coaxial injectors for a 420 N-class bipropellant thruster were investigated. Three types of injectors, namely closed-type, open-type, and screw-type, were manufactured and designed to have the same spray angle and injection pressure drop. Water was used as a simulant, and cold-flow tests were conducted under ambient temperature and pressure conditions. Since the inner and outer injectors were designed to be the same type, only the inner fuel injectors that were easy to measure were used. Using a phase doppler particle analyzer, the velocity and diameter of atomized droplets were measured. Closed-type swirl injector exhibited droplet distributions with relatively high velocities and small SMD compared to the other two injectors. Open-type swirl injector formed droplets with reverse velocities in the center region and had a large recirculation zone. Screw-type swirl injector showed a sharp decrease in droplet velocity and size with radial distance from the liquid film breakup point. For the same design requirements, the closed-type swirl injector has superior atomization performance.

전산유체역학(CFD)를 활용한 정수공정에서 유공관 설계 (Design of the Perforated Pipe in Water Treatment Process using CFD)

  • 조영만;유수전;노재순;빈재훈
    • 대한환경공학회지
    • /
    • 제32권9호
    • /
    • pp.887-893
    • /
    • 2010
  • 정수공정에서 활용되고 있는 유공관의 일반적인 기능은 균등한 압력으로 일정한 유량을 유출시키는 것이다. 정수공정에서 유공관이 여러 공정에서 활용되고 있음에도 불구하고 유공관 설계에 대한 일반적인 설계인자가 없는 실정이며 따라서 본 연구에서는 전산유체역학적(Computational Fluid Dynamics) 기법을 활용하여 정수공정에 활용되고 있는 유공관 설계인자를 도출하고자 하였다. 유공관 유출량의 균등성은 유공관 표면적 대비 전체 유공단면적 합의 비가 작아질수록 향상되는 경향을 보인다. 즉 유공 면적비가 작아질수록 유출 균등성은 그에 비례하여 향상되며 또한 동일한 면적비에서 유공의 개수가 증가할수록 유출량 균등성은 향상된다. 특히 유공관의 직경에 해당하는 길이 당 2개의 유공(2/D)을 배치하는 경우가 균등성의 향상 폭이 가장 크며 또한 압력 강하 값이 가장 적어 수리학적으로 가장 유리한 유공 개수이다. 유공관 유입 유속이 작고(약 0.06 m/s), 유공관 길이가 길어질수록 유출량은 전단에서 후단으로 갈수록 감소하며 반대로 유공관 유입 유속이 크고 (3 m/s) 유공관이 길어지면 유출량은 후단으로 갈수록 증가하는 경향을 보인다.

거친 발수 표면에 충돌하는 유체 방울의 팽창 및 수축 역학: 미세 유체 방울의 형성 (Spreading and retraction dynamics of a liquid droplet impacting rough hydrophobic surfaces: Formation of micrometer-sized drops)

  • 김의진;김정현
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.15-21
    • /
    • 2021
  • In this study, we investigated the dynamics of a droplet impacting rough hydrophobic surfaces through high-speed imaging. Micrometer-sized structures with grooves and pillars were fabricated on smooth Polydimethylsiloxane (PDMS) surfaces by laser ablation. We used Newtonian and non-Newtonian liquid droplets to study the drop impact dynamics. De-ionized water and aqueous glycerin solutions were used for the Newtonian liquid droplet. The solutions of xanthan gum in water were prepared to provide elastic property to the Newtonian droplet. We found that the orientation of the surface structures affected the maximal spreading diameter of the droplet due to the degree of slippage. During the droplet retraction, the dynamic receding contact angles were measured to be around 90° or less. It resulted in the formation of the micro-capillary bridges between the receding droplet and the surface structures. Then, the rupture of the capillary bridge led to the formation of micrometer-sized droplets on top of the surface structures. The size of the microdroplets was found to increase with increasing the impacting velocity and viscosity of the Newtonian liquid droplets. However, the size of the isolated microdroplets decreased with enhancing the elasticity of the droplets, and the size of the non-Newtonian microdroplets was not affected by the impacting velocity.