본 논문은 통계 기반 한국어 화행분류를 위하여 필요한 각 자질이 분류 성능에 미치는 영향과 성능 향상에 기여하는 자질 조합을 비교 평가한다. 지지벡터기계 학습 방법을 이용하여 구현한 화행 분류시스템을 통해 실험한 결과, n-gram 자질 중 품사 바이그램은 유용하지 않으며 형태소-품사 쌍과 다른 자질들을 결합했을 때 성능이 향상됨을 알 수 있었다. 또한, 자질 선택 기법을 사용한 자질 비율에 따른 실험을 통해서 매우 적은 자질만으로도 화행 분류에 있어 어느 정도 안정된 성능을 낼 수 있었다. 아울러, 실험 결과의 분석을 통해 한국어에서 마지막 어절이 문장 전체의 화행분류에 중요한 역할을 하며, 한국어의 특징인 자유 어순이나 주어의 빈번한 생략 등이 화행 분류 실험의 성능에 영향을 미친다는 사실도 알 수 있었다.
목적 지향 대화에서 사용자의 의도는 화행과 개념열의 쌍으로 구성된 영역 행위로 표현될 수 있다. 그러므로 지능적인 대화 시스템을 구성하기 위해서는 영역 행위를 정확히 파악하는 것이 매우 중요하다. 본 논문에서는 CRFs (Conditional Random Fields)를 이용하여 화행과 개념열을 동시에 결정하는 통계 모델을 제안한다. 편향 학습 문제를 피하기 위하여 제안한 모델은 어휘와 품사 같은 낮은 수준의 언어 자질을 입력 자질로 사용하며, 카이 제곱 통계량을 이용하여 불필요한 자질들을 제거한다. 일정 관리 영역에서 실험을 수행한 결과, 제안한 모델은 화행 분류 정착률에서 93.0%, 개념열 분류 정확률에서 90.2%의 좋은 성능을 보였다.
본 연구는 목적 지향 대화 시스템 내에서 단일 한국어 텍스트 형식의 질문으로부터 질의자의 의도를 파악하는 것을 목적으로 한다. 목적 지향 대화 시스템은 텍스트 또는 음성을 통한 사용자의 특수한 요구를 만족시켜주는 대화 시스템을 의미한다. 의도 분석 과정은 답변 생성에 앞서 사용자의 질의 의도를 파악하는 단계로, 목적 지향 대화 시스템 전체의 성능에 큰 영향을 준다. 생활화학제품이라는 특정 분야에 제안 모델을 사용하였고, 해당 분야와 관련된 한국어 텍스트 데이터를 이용하였다. 특정 분야에 독립적이며 범용적인 의도를 의미하는 화행과, 특정 분야에 종속적인 의도를 의미하는 개념열로 나누어 분석한다. 화행과 개념열을 분석하기 위하여 단어 임베딩 모델, 합성곱 신경망을 이용한 분류 방법을 제안한다. 단어 임베딩 모델을 통하여 단어의 의미정보를 추상화하고, 추상화된 단어의 의미정보를 기반으로 합성곱 신경망을 통하여 개념열 및 화행 분류를 수행한다.
To resolve ambiguities in speech act classification, various machine learning models have been proposed over the past 10 years. In this paper, we review these machine learning models and present the results of experimental comparison of three representative models, namely the decision tree, the support vector machine (SVM), and the maximum entropy model (MEM). In experiments with a goal-oriented dialogue corpus in the schedule management domain, we found that the MEM has lighter hardware requirements, whereas the SVM has better performance characteristics.
화행이란 발화 속에 포함되어 있는 화자에 의해 의도된 언어적 행위이다. 대화 시스템에서 입력된 발화에 적합한 화행을 분류하는 것은 중요하다. 기존의 화행분류에 관한 연구는 규칙기반과 기계학습 기반의 방법을 많이 사용한다. 본 논문에서는 대표적인 기계학습 방법인 지지벡터기계(SVM)와 변환기반 학습(TBL)을 조합한 화행 분류 방법을 제안한다. 이를 위해, 화행별 학습 발화의 수에 기반하여 분류 우선순위를 조정함으로써 지지벡터기계의 분류 편향 문제를 해결하였고, 오답일 확률이 높은 분류 결과에 대해서 변환 기반 학습을 통해 생성된 보정 규칙을 적용함으로써 화행분류 성능을 개선하는 방법을 제안한다. 본 논문에서 화행별 학습 발화 수의 차이를 고려한 분류 우선순위 변화와 후보정 규칙을 이용한 화행분류 방법을 실험을 통해 평가하였으며, 이는 학습 발화 수가 낮은 화행의 우선순위를 고려하지 않은 기존의 화행 분류보다 성능이 향상되었다.
대화 에이전트와 관련된 지금까지의 연구는 대개 대상 도메인을 한정하고, 특정 목적을 달성하기 위해 사용자와 대화할 수 있는 에이전트에 관한 연구가 많았다. 본 연구에서는 도메인이 한정되지 않은 일반 도메인 대화에서 화행(speech act)정보를 수동으로 부착시켜 구축한 말뭉치에 대해 소개하고 이 말뭉치를 토대로 자동으로 화행을 분류할 수 있는 유용한 자질들을 선보인다. 그리고 도메인이 한정된 말뭉치와 도메인이 한정되지 않은 말뭉치를 자동으로 화행분류해 본 실험한 결과를 비교하였다.
심층인공신경망을 이용한 대화 모델링 연구가 활발하게 진행되고 있다. 본 논문에서는 대화에서 발화의 감정과 화행을 분류하기 위해 멀티태스크(multitask) 학습을 이용한 End-to-End 시스템을 제안한다. 우리는 감정과 화행을 동시에 분류하는 시스템을 개발하기 위해 멀티태스크 학습을 수행한다. 또한 불균형 범주 분류를 위해 계단식분류(cascaded classification) 구조를 사용하였다. 일상대화 데이터셋을 사용하여 실험을 수행하였고 macro average precision으로 성능을 측정하여 감정 분류 60.43%, 화행 분류 74.29%를 각각 달성하였다. 이는 baseline 모델 대비 각각 29.00%, 1.54% 향상된 성능이다. 본 논문에서는 제안하는 구조를 이용하여, 발화의 감정 및 화행 분류가 End-to-End 방식으로 모델링 가능함을 보였다. 그리고, 두 분류 문제를 하나의 구조로 적절히 학습하기 위한 방법과 분류 문제에서의 범주 불균형 문제를 해결하기 위한 분류 방법을 제시하였다.
대화에서 화자의 의도는 감정, 화행, 그리고 서술자로 표현될 수 있다. 따라서 사용자 질의에 정확하게 응답하기 위해서 대화 시스템은 발화에 내포된 감정, 화행, 그리고 서술자를 파악해야한다. 많은 이전 연구들은 감정, 화행, 서술자를 독립된 분류 문제로 다뤄왔다. 그러나 몇몇 연구에서는 감정, 화행, 서술자가 서로 연관되어 있음을 보였다. 본 논문에서는 Convolutional Neural Netowork를 이용하여 감정, 화행, 서술자를 동시에 분석하는 통합 모델을 제안한다. 제안 모델은 특정 추상화 계층과, 공유 추상화 계층으로 구성된다. 특정 추상화 계층에서는 감정, 화행, 서술자의 독립된 정보가 추출되고 공유 추상화 계층에서 독립된 정보들의 조합이 추상화된다. 학습 시 감정의 오류, 화행의 오류, 서술자의 오류는 부분적으로 역 전파 된다. 제안한 통합 모델은 실험에서 독립된 모델보다 좋은 성능(감정 +2%p, 화행 +11%p, 서술자 +3%)을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.