• Title/Summary/Keyword: Diagonal Matrix

Search Result 256, Processing Time 0.024 seconds

Design of robust LQR/LQG controllers by LMIs (Linear Matrix Inequalities(LMIs)를 이용한 강인한 LQR/LQG 제어기의 설계)

  • 유지환;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.988-991
    • /
    • 1996
  • The purpose of this thesis is to develop methods of designing robust LQR/LQG controllers for time-varying systems with real parametric uncertainties. Controller design that meet desired performance and robust specifications is one of the most important unsolved problems in control engineering. We propose a new framework to solve these problems using Linear Matrix Inequalities (LMls) which have gained much attention in recent years, for their computational tractability and usefulness in control engineering. In Robust LQR case, the formulation of LMI based problem is straightforward and we can say that the obtained solution is the global optimum because the transformed problem is convex. In Robust LQG case, the formulation is difficult because the objective function and constraint are all nonlinear, therefore these are not treatable directly by LMI. We propose a sequential solving method which consist of a block-diagonal approach and a full-block approach. Block-diagonal approach gives a conservative solution and it is used as a initial guess for a full-block approach. In full-block approach two LMIs are solved sequentially in iterative manner. Because this algorithm must be solved iteratively, the obtained solution may not be globally optimal.

  • PDF

Motion Analysis of Two Floating Platforms with Mooring and Hawser Lines in Tandem Moored Operation by Combined Matrix Method and Separated Matrix Method

  • KOO BON-JUN;KIM MOO-HYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.1-15
    • /
    • 2005
  • The motion behaviors including hydrodynamic interaction and mechanical coupling effects on multiple-body floating platforms are simulated by using a time domain hull/mooring/riser coupled dynamics analysis program. The objective of this study is to evaluate off-diagonal hydrodynamic interaction effects and mechanical coupling effects on tandem moored FPSO and shuttle taker motions. In the multiple-body floating platforms interaction, hydrodynamic coupling effects with waves and mechanical coupling effects through the connectors should be considered. Thus, in this study, the multiple-body platform motions are calculated by Combined Matrix Method (CMM) as well as Separated Matrix Method (SMM). The advantage of the combined matrix method is that it can include all the 6Nx6N full hydrodynamic and mechanical interaction effects among N bodies. Whereas, due to the larger matrix size, the calculation time of Combined Matrix Method (CMM) is longer than the Separated Matrix Method (SMM). On the other hand, Separated Matrix Method (SMM) cannot include the off-diagonal 6x6 hydrodynamic interaction coefficients although it can fully include mechanical interactions among N bodies. To evaluate hydrodynamic interaction and mechanical coupling effects, tandem moored FPSO and shuttle tanker is simulated by Combined Matrix Method (CMM) and Separated Matrix Method (SMM). The calculation results give a good agreement between Combined Matrix Method (CMM) and Separated Matrix Method (SMM). The results show that the Separated Matrix Method (SMM) is more efficient for tandem moored FPSO and shuttle tanker. In the numerical calculation, the hydrodynamic coefficients are calculated from a 3D diffraction/radiation panel program WAMIT, and wind and current forces are generated by using the respective coefficients given in the OCIMF data sheet.

HYBRID REORDERING STRATEGIES FOR ILU PRECONDITIONING OF INDEFINITE SPARSE MATRICES

  • Lee Eun-Joo;Zgang Jun
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.307-316
    • /
    • 2006
  • Incomplete LU factorization preconditioning techniques often have difficulty on indefinite sparse matrices. We present hybrid reordering strategies to deal with such matrices, which include new diagonal reorderings that are in conjunction with a symmetric nondecreasing degree algorithm. We first use the diagonal reorderings to efficiently search for entries of single element rows and columns and/or the maximum absolute value to be placed on the diagonal for computing a nonsymmetric permutation. To augment the effectiveness of the diagonal reorderings, a nondecreasing degree algorithm is applied to reduce the amount of fill-in during the ILU factorization. With the reordered matrices, we achieve a noticeable improvement in enhancing the stability of incomplete LU factorizations. Consequently, we reduce the convergence cost of the preconditioned Krylov subspace methods on solving the reordered indefinite matrices.

A NOTE ON A FINITE TRIANGULAR OPERATOR MATRIX

  • Ko, Eun-Gil
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.561-569
    • /
    • 1997
  • In this paper we shall characterize a finite triangular operator matrix with M-hyponormal operators on main diagonal. This shows in particualr that such an operator is subscalar operator. As a corollary, we get that every algebraic operator is subscalar.

  • PDF

Study on Space-Time Adaptive Processing Based on Novel Clutter Covariance Matrix Estimation Using Median Value (중위수를 이용한 새로운 간섭 공분산 행렬의 예측이 적용된 Space-Time Adaptive Processing에 대한 연구)

  • Kang, Sung-Yong;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2010
  • In this paper, we presented a signal model of STAP and actual environment of clutter. The novel estimation method of clutter covariance matrix using median value is proposed to overcome serious performance degradation after NHD in nonhomogeneous clutter. Eigen value characteristic is improved through diagonal loading. Target detection ability and SINR loss of the proposed method though MSMI statistic is also compared with conventional method using average value. The simulation results, confirm the proposed method has better performance than others.

Disease Region Feature Extraction of Medical Image using Wavelet (Wavelet에 의한 의용영상의 병소부위 특징추출)

  • 이상복;이주신
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.3
    • /
    • pp.73-81
    • /
    • 1998
  • In this paper suggest for methods disease region feature extraction of medical image using wavelet. In the preprocessing, the shape informations of medical image are selected by performing the discrete wavelet transform(DWT) with four level coefficient matrix. In this approach, based on the characteristics of the coefficient matrix, 96 feature parameters are calculated as follows: Firstly. obtaining 32 feature parameters which have the characteristics of low frequency from the parameters according to the horizontal high frequency are calculated from the coefficient matrix of horizontal high frequency. In the third place, 16 vertical feature parameters are also calculated using the same kind of procedure with respect to the vertical high frequency. Finally, 32 feature parameters of diagonal high frequency are obtained from the coefficient matrix of diagonal high frequency. Consequently, 96 feature aprameters extracted. Using suggest algorithm in this paper will, implamentation can automatic recognition system, increasing efficiency of picture achieve communication system.

  • PDF

ON QUASI-STABLE EXCHANGE IDEALS

  • Chen, Huanyin
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.1-15
    • /
    • 2010
  • We introduce, in this article, the quasi-stable exchange ideal for associative rings. If I is a quasi-stable exchange ideal of a ring R, then so is $M_n$(I) as an ideal of $M_n$(R). As an application, we prove that every square regular matrix over quasi-stable exchange ideal admits a diagonal reduction by quasi invertible matrices. Examples of such ideals are given as well.

A three-dimensional numerical model for shallow water flows using a free surface correction method (자유수면 보정기법을 이용한 3차원 천수유동 수치모형)

  • Jang, Won-Jae;Lee, Seung-Oh;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.181-185
    • /
    • 2007
  • A free-surface correction(FSC) method is presented to solve the 3-D shallow water equations. Using the mode splitting process, FSC method can simulate shallow water flows under the hydrostatic assumption. For the hydrostatic pressure calculation, the momentum equations are firstly discretized using a semi-implicit scheme over the vertical direction leading to the tri-diagonal matrix systems. A semi-implicit scheme has been adopted to reduce the numerical instability caused by relatively small vertical length scale compare to horizontal one. and, as the free surface correction step the final horizontal velocity fields are corrected after the final surface elevations are obtained. Finally, the vertical final velocity fields can be calculated from the continuity equation. The numerical model is applied to the calculation of the simulation of flow fields in a rectangular open channel with the tidal influence. The comparisons with the analytical solutions show overall good agreements between the numerical results and analytical solutions.

  • PDF

상태궤환을 이용한 2차원 시스템의 극배치

  • 이원규;이상혁
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.8
    • /
    • pp.659-666
    • /
    • 1990
  • Curing recent years, several state-space models describing discrete two dimensional systems are proposed. In this paper, we consider the problem of pole assignment of two dimensional systems using state feedback, based on state-space model proposed by Roessser. The design procedure is seperated into two steps. in thie first step, the sufficient condition for off diagonal matrix of the input transformed system to be zero is derived and in the second step, it is shown that the pole assignment problem of two dimensional systems is divided into the one of two 1-dimensional systems. Finally, a numerical example for illustrating the technique is given.

  • PDF

Two-Phase Approach for Machine-Part Grouping Using Non-binary Production Data-Based Part-Machine Incidence Matrix (수리계획법의 활용 분야)

  • Won, You-Dong;Won, You-Kyung
    • Korean Management Science Review
    • /
    • v.24 no.1
    • /
    • pp.91-111
    • /
    • 2007
  • In this paper an effective two-phase approach adopting modified p-median mathematical model is proposed for grouping machines and parts in cellular manufacturing(CM). Unlike the conventional methods allowing machines and parts to be improperly assigned to cells and families, the proposed approach seeks to find the proper block diagonal solution where all the machines and parts are properly assigned to their most associated cells and families in term of the actual machine processing and part moves. Phase 1 uses the modified p-median formulation adopting new inter-machine similarity coefficient based on the non-binary production data-based part-machine incidence matrix(PMIM) that reflects both the operation sequences and production volumes for the parts to find machine cells. Phase 2 apollos iterative reassignment procedure to minimize inter-cell part moves and maximize within-cell machine utilization by reassigning improperly assigned machines and parts to their most associated cells and families. Computational experience with the data sets available on literature shows the proposed approach yields good-quality proper block diagonal solution.