• 제목/요약/키워드: Diacylglycerol kinase

검색결과 38건 처리시간 0.023초

소의 뇌 Inositol triphosphate kinase와 Calmodulin-Affigel과의 친화도 (THE AFFINITY OF CALMODULIN-AFFIGEL FOR INOSITOL TRIPHOSPHATE KINASE FROM BOVINE BRAIN)

  • 임승우;김정희
    • Journal of Yeungnam Medical Science
    • /
    • 제7권1호
    • /
    • pp.39-50
    • /
    • 1990
  • 세포막의 정보전달기전중 phosphoinositide system은 정보가 전달될때 phospholipase C 효소의 작용으로 phosphatidyl inositol bisphosphate로부터 inositol triphosphate($IP_3$)와 diacylglycerol이 생성되며 $IP_3$는 다시 $IP_3$kinase에 의해 inositol tetrakisphosphate($IP_4$)로 되어 이차전령 물로서 작용한다. 본 연구는 $IP_3$kinase효소가 $Ca^{2+}$와 calmodulin에 의해 활성화되는 성질을 이용하여 calmodulin을 정제하고 $IP_3$kinase효소와의 친화도를 비교 관찰하였다. Calmodulin정제는 phenyl-Sepharose resin을 이용하여 column chromatography를 시행하여 정제확인하였으며 분자량이 17,000임을 SDS-polyacrylamide gel 전기영동으로 확인하였다. 정제된 calmodulin을 affigel column에 결합시킨 gel에 소의 뇌로부터 분리한 $IP_3$kinase효소가 담긴 시료를 calmodulin-affigel column에 적용하여 결합 및 유출정도를 비교하였으며 $Ca^{2+}$이 든 buffer에서 친화도가 가장 컸으며 유출은 EGTA용액에서 일부 유출되었으며 calmodulin/$Ca^{2+}$이 든 buffer에선 강한 유출정도를 관찰하였다. 그러나 calmodulin/$Ca^{2+}$$IP_3$kinase효소의 활성을 증가시키며 calmodulin이 단백질이어서 정제면에서 효소와의 분리가 쉽지않아 여러 다른 detergent를 적용하였으나 0.2% chaps buffer에서 집중된 유출을 관찰하였다.

  • PDF

Nucleotide Sequence on Upstream of the cdd Locus in Bacillus subtilis

  • JONG-GUK KIM;KIM, KYE-WON;SEON-KAP HWANG;JOO-WON SUH;BANG-HO SONG;SOON-DUCK HONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권3호
    • /
    • pp.125-131
    • /
    • 1995
  • A 3, 346 bp of the cdd upstream region in Bacillus subtilis was sequenced from the pSO1 (Song BH and J Neuhard. 1989. Mol. Gen. Genet 216: 462-468) and sequence homology was searched to the known genes in Genbank and European Molecular Biology Laboratory databanks. Five complete and one truncated putative coding sequences deduced from the nucleotide sequence were found through the ORF searching by Genetyx and Macvector software, and one of them was identified as the dgk (diacylglycerol kinase) gene and another, a truncated one, as the phoH (phosphate starvation-inducible gene) gene. The B. subtilis dgk gene, having a role for response to several environmental stress signals, revealed an open reading frame of 134 amino acids with 43.1% of sequence identity to the Streptococcus mutans dgk gene. The carboxy terminal 59 residues of the truncated phoH gene showed 52.7% and 34.5% of sequence identity in amino acids with the corresponding genes of Mycobacterium leprae and Escherichia coli. The four remaining coding sequences consisting of 115, 421, 91, and 91 residues were thought to be unknown ORFs because they have no significant similarity to known genes.

  • PDF

Protein kinase (PKC)-ε와 serotonin transporter (SERT)의 C-말단과의 결합 (Protein Kinase (PKC)-ε Interacts with the Serotonin Transporter (SERT) C-Terminal Region)

  • 문일수;석대현
    • 생명과학회지
    • /
    • 제20권10호
    • /
    • pp.1451-1457
    • /
    • 2010
  • Serotonin (5-hydroxytryptamine (5-HT))는 신경계의 세포-세포 간의 신호전달의 주요한 신경전달물질이다. 세포막에 존재하는 serotonin transporter (SERT)는 연접간격에 존재하는 5-HT를 세포 내로 재흡수 하여 세포외부의 5-HT 농도를 조절하지만 그 기전은 아직 밝혀지지 않았다. 본 연구에서는 yeast two-hybrid system을 사용하여 SERT의 C-말단이 protein kinase C-$\varepsilon$ (PKC-$\varepsilon$)과 특이적으로 결합함을 알았다. PKC-$\varepsilon$는 PKC의 isotype으로 calcium 비의존적이며 phorbol ester/diacylglycerol 민감성 serine/threonine kinase이다. $Na^+/Cl^-$ 의존성 SLC6 gene family의 다른 수송체는 PKC-$\varepsilon$과 결합하지 않았다. Deletion mutant들을 사용하여 SERT는 PKC-$\varepsilon$의 C-말단부위와 결합함을 알았으며, 또한 이 단백질간의 결합을 GST pull-down assay로 확인하였다. PKC-$\varepsilon$는 in vitro에서 SERT의 N-말단의 펩티드를 인산화시켰다. 이러한 결과들은 PKC-$\varepsilon$에 의한 SERT의 인산화가 세포막에 존재하는 SERT의 활성을 조절하는 역할을 할 가능성을 시사한다.

Phospholipase C isozyme들과 조절물질 선별체계

  • 민도식;이영한;서판길;류성호
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1993년도 제2회 신약개발 연구발표회 초록집
    • /
    • pp.63-63
    • /
    • 1993
  • Phospoinositide-specific phospholipase C (PLC)는 세포막의 phosphoinositide를 분해하여 inositol phosphates와 diacylglycerol을 전달하는데 핵심적인 효소이다. PLC는 분자량과 1차구조의 비교에 의하여 type (PLC-$\beta$, ${\gamma}$, $\delta$)로 구분되며, 각 type마다 2-4종의 subtype이 존재하고 PLC isozyme들에 대한 현재가지의 각종 신호 전달 및 조절에 대한 연구를 종합하면: (1) PLC-$\beta$ type은 G-protein과 연결되어 신호를 전달받고, (2) PLC-${\gamma}$ type은growth factor receptor tyrosine kinase에 의하여 인산화 되어 활성화됨으로, 세포의 성장 신호를 전달하며. (3) PLC-$\delta$ type에 대한 신호 전달이나 조절은 밝혀지지 않고 있다.

  • PDF

Subcellular Localization of Diacylglycerol-responsive Protein Kinase C Isoforms in HeLa Cells

  • Kazi, Julhash U.;Kim, Cho-Rong;Soh, Jae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권9호
    • /
    • pp.1981-1984
    • /
    • 2009
  • Subcellular localization of protein kinase often plays an important role in determining its activity and specificity. Protein kinase C (PKC), a family of multi-gene protein kinases has long been known to be translocated to the particular cellular compartments in response to DAG or its analog phorbol esters. We used C-terminal green fluorescent protein (GFP) fusion proteins of PKC isoforms to visualize the subcellular distribution of individual PKC isoforms. Intracellular localization of PKC-GFP proteins was monitored by fluorescence microscopy after transient transfection of PKC-GFP expression vectors in the HeLa cells. In unstimulated HeLa cells, all PKC isoforms were found to be distributed throughout the cytoplasm with a few exceptions. PKC$\theta$ was mostly localized to the Golgi, and PKC$\gamma$, PKC$\delta$ and PKC$\eta$ showed cytoplasmic distribution with Golgi localization. DAG analog TPA induced translocation of PKC-GFP to the plasma membrane. PKC$\alpha$, PKC$\eta$ and PKC$\theta$ were also localized to the Golgi in response to TPA. Only PKC$\delta$ was found to be associated with the nuclear membrane after transient TPA treatment. These results suggest that specific PKC isoforms are translocated to different intracellular sites and exhibit distinct biological effects.

G Protein-Coupled Receptor Signaling in Gastrointestinal Smooth Muscle

  • Sohn, Uy-Dong;Kim, Dong-Seok;Murthy, Karnam S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권4호
    • /
    • pp.287-297
    • /
    • 2001
  • Contraction of smooth muscle is initiated by an increase in cytosolic $Ca^{2+}$ leading to activation of $Ca^{2+}$/ calmodulin-dependnet myosin light chain (MLC) kinase and phosphorylation of MLC. The types of contraction and signaling mechanisms mediating contraction differ depending on the region. The involvement of these different mechanisms varies depending on the source of $Ca^{2+}$ and the kinetic of $Ca^{2+}$ mobilization. $Ca^{2+}$ mobilizing agonists stimulate different phospholipases $(PLC-{\beta},\;PLD\;and\;PLA_2)$ to generate one or more $Ca^{2+}$ mobilizing messengers $(IP_3\;and\;AA),$ and diacylglycerol (DAG), an activator of protein kinase C (PKC). The relative contributions of $PLC-{\beta},\;PLA_2$ and PLD to generate second messengers vary greatly between cells and types of contraction. In smooth muscle cell derived form the circular muscle layer of the intestine, preferential hydrolysis of $PIP_2$ and generation of $IP_3$ and $IP_3-dependent\;Ca^{2+}$ release initiate the contraction. In smooth muscle cells derived from longitudinal muscle layer of the intestine, preferential hydrolysis of PC by PLA2, generation of AA and AA-mediated $Ca^{2+}$ influx, cADP ribose formation and $Ca^{2+}-induced\;Ca^{2+}$ release initiate the contraction. Sustained contraction, however, in both cell types is mediated by $Ca^{2+}-independent$ mechanism involving activation of $PKC-{\varepsilon}$ by DAG derived form PLD. A functional linkage between $G_{13},$ RhoA, ROCK, $PKC-{\varepsilon},$ CPI-17 and MLC phosphorylation in sustained contraction has been implicated. Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to $M_2$ muscarinic receptors activating at least three intracellular phospholipases, i.e. phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD) and the high molecular weight (85 kDa) cytosolic phospholipase $A_2\;(cPLA_2)$ to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic $M_3$ receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the $G_{q/11}$ type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate $(PIP_2),$ producing inositol 1, 4, 5-trisphosphate $(IP_3)$ and DAG. $IP_3$ causes release of intracellular $Ca^{2+}$ and formation of a $Ca^{2+}$-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway.

  • PDF

고혈압-연관 단백질 부활효소 C의 활성과 물리치료의 상관성 (The Activity of Hypertension-related Protein Kinase C and the Relationship of Physical Therapy)

  • 김중환
    • The Journal of Korean Physical Therapy
    • /
    • 제20권3호
    • /
    • pp.61-68
    • /
    • 2008
  • Purpose: Protein kinase C (PKC) is a member of a family of serine/threonine kinases that are activated by diacylglycerol (DG) and PKC stimulants. PKC play a key role in signal transduction, including muscle contraction, cell migration, apoptosis, cell proliferation and differentiation. However, the mechanism relating mitogen-activated protein kinases (MAPKs) and PKC, especially in the volume-dependent hypertensive state, remains unclear. Methods: In the present study, I investigated the relationship between PKC and MAPKs for isometric contraction, PKC translocation, and enzymatic activity from normotensive sham-operated rats (NSR) and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive rats (ADHR). Results: Systolic blood pressure was significantly increased in ADHR than in NSR. Physiological salt solution (PSS)-induced resting tension and the intracellular $Ca^{2+}$ concentration ([$Ca^{2+}{_i}$]) were different in the ADHR and NSR. The expression of PKC$\alpha$, PKC$\beta$II, PKC$\delta$, PKC$\varepsilon$ and PKC$\xi$ were different between the cytoplasmic and membranous fractions. However, expression of the PKC isoforms did not differ for the ADHR and NSR. The use of 12-deoxyphorbol 13-isobutyrate (DPB, a PKC stimulant) induced isometric contraction in $Ca^{2+}$-free medium, which was diminished in muscle strips from ADHR as compared to NSR. Increased vasoconstriction and phosphorylation induced by the use of 1 ${\mu}$M DPB were inhibited by treatment with 10 ${\mu}$M PD098059 and 10 ${\mu}$M SB203580, inhibitors of extracellular-regulated protein kinase 1/2 (ERK1/2) and p38 MAPK from ADHR, respectively. Conclusion: These results suggest that the development of aldosterone analogue-induced hypertension is associated with an altered blood pressure, resting tension, [$Ca^{2+}{_i}$], and that the $Ca^{2+}$-independent contraction evoked by PKC stimulants is due to the activation of ERK1/2 and p38 MAPK in volume-dependent hypertension. Therefore, it is suggested that PKC activity affects volume-dependent hypertension and the need to develop cardiovascular disease-specialized physical therapy.

  • PDF

Mouse 갑상선에서 thyrotropin에 의한 thyroxine 유리에 미치는 methoxamine의 억제효과에 대한 protein kinase C의 관련 (The involvement of protein kinase C in the inhibitory effect of methoxamine on the thyrotropin-induced release of thyroxine in mouse thyroid)

  • 김세곤;김진상
    • 대한수의학회지
    • /
    • 제38권3호
    • /
    • pp.508-517
    • /
    • 1998
  • There is evidence that the sympathetic nervous system exerts a control on thyroid function via an adrenergic innervation of thyroid cells. Although it is clear that the inhibitory effects of catecholamines result from an activation of ${\alpha}_1$-adrenoceptors, the mechanisms involved in ${\alpha}_1$-stimulation are not fully understood. The effects of methoxamine and protein kinase C (PKC) activator on the release of thyroxine ($T_4$) from mouse thyroid were studied to clarify the role of PKC in the regulation of $T_4$ release in vitro. The glands were incubated in the medium, samples of the medium were assayed for $T_4$ by EIA kits. Methoxamine inhibited the TSH-stimulated $T_4$ release. This inhibition was reversed by prazosin, an ${\alpha}_1$-adrenergic antagonist. Futhermore, the inhibitory effect of methoxamine on the $T_4$ release stimulated by TSH was prevented by chloroethylclonidine, an ${\alpha}_{1b}$-adrenoceptor antagonist, but not by WB4101, an ${\alpha}_{1a}$-adrenoceptor antagonist. Also methoxamine inhibited the forskolin-, cAMP- or IBMX-stimulated $T_4$ release. These inhibition were reversed by PKC inhibitors, such as staurosporine and $H_7$. PMA, a PKC activator, completely inhibited the TSH-stimulated $T_4$ release, and its inhibition was reversed by staurosporine and $H_7$, but not by chelerythrine. R59022 (a diacylglycerol kinase inhibitor), like methoxamine, also inhibited the TSH-stimulated $T_4$ release, and its inhibition was also reversed by staurosporine. The present study suggests that methoxamine inhibition of $T_4$ release from mouse thyroid can be induced by activation of the ${\alpha}_{1b}$-adrenoceptors and that it is mediated through the ${\alpha}_1$-adrenoceptor-stimulated PKC formation.

  • PDF

갑상선에서 protein kinase C에 의한 thyroxine 유리조절 (Regulation of thyroxine release in the thyroid by protein kinase C)

  • 김진상
    • 대한수의학회지
    • /
    • 제39권6호
    • /
    • pp.1073-1080
    • /
    • 1999
  • Previous studies suggested that the inhibition of thyroxine ($T_4$) release by ${\alpha}_1$-adrenoceptor and muscarinic receptor stimulation results in activated protein kinase C (PKC) from mouse and guinea pig thyroids. In the present study, the effect of carbachol, methoxamine, phorbol myristate acetate (PMA), and R59022 on the release of $T_4$ from the mouse, rat, and guinea pig thyroids was compared to clarify the role of PKC in the regulation of the release of $T_4$. The thyroids were incubated in the medium containing the test agents, samples of the medium were assayed for $T_4$ by EIA kits. Forskolin, an adenylate cyclase activator, chlorophenylthio-cAMP sodium, a membrane permeable analog of cAMP, and isobutyl-methylxanthine, a phosphodiesterase inhibitor, like TSH (thyroid stimulating hormone), enhaced the release of $T_4$ from the mouse, rat, and guinea pig thyroids. Methoxamine, an ${\alpha}_1$-adrenoceptor agonist, inhibited the TSH-stimulated release of $T_4$ in mouse, but not rat and guinea pig thyroids. In contrast, carbachol, a muscarinic receptor agonist, inhibited the release of $T_4$ in guinea pig, but not mouse and rat thyroids. These inhibition were reversed by prazosin, an ${\alpha}_1$-adrenoceptor antagonist or atropine, a muscarinic antagonist or $M_1$- and $M_3$-muscarinic antagonists, in mouse or guinea pig thyroids. In addition, staurosporine, a PKC inhibitor, reversed methoxamine or carbachol inhibition of TSH stimulation. Furthermore, PMA, a PKC activator, and R59022, a diacylglycerol (DAG) kinase inhibitor, inhibited the TSH-stimulated release of $T_4$ in mouse, rat, and guinea pig thyroids. These inhibition were blocked by staurosporine. These findings suggest that the activation of receptor or DAG inhibits TSH-stimulated $T_4$ release through a PKC-dependent mechanism in thyroid gland.

  • PDF

옥수수 자엽초의 신장에 미치는 TPA와 IAA의 효과 (Effects of TPA and IAA on Corn Coleoptile Elongation)

  • 정은수
    • Journal of Plant Biology
    • /
    • 제35권1호
    • /
    • pp.77-84
    • /
    • 1992
  • 오옥신의 작용이 PKC에 의한 단백질의 인산화 과정과 연관되어 있는지 확인하기 위하여 PKC를 활성화시키는 물질인 DAG와 TPA 그리고 오옥신이 옥수수 자엽초의 신장에 미치는 효과를 조사하였다. DAG와 TPA를 옥수수 자엽초에 처리하면 DAG는 최대 500%까지, TPA는 최대 300%까지 자엽초 생장율을 증가시켰다. 이때 IAA나 TPA 각각에 의한 생장율 증가의 합(최대 800%)보다도 TPA와 IAA를 함께 처리한 조직의 생장율 증가가 더 커서(최대 1200%) TPA와 IAA는 상승효과를 나타내었다. 전기영동을 통하여 TPA와 IAA를 처리한 자엽초 세포질의 단백질 인산화 정도를 비교한 결과 TPA+IAA>IAA>TPA>control의 순서대로 단백질의 인산화가 증가했다. 이러한 단백질 인산화의 증가와 신장 생장과의 관계를 명확히 하기 위해 PKC 억제제로 알려진 STA를 자엽초에 처리한 결과 TPA의 존재에 관계없이 생장율이 80%까지 저해되었다. 이와 같은 실험 결과들은 IAA에 의한 자엽초 신장 촉진 과정의 적어도 한 단계에 동물의 PKC와 유사할 것으로 추측되는 PKC에 의한 단백질 인산화가 연관되어 있을 가능성이 있다고 생각하게 한다.

  • PDF