• Title/Summary/Keyword: Diabetes prediction

Search Result 79, Processing Time 0.029 seconds

Development of Prediction Model for Diabetes Using Machine Learning

  • Kim, Duck-Jin;Quan, Zhixuan
    • Korean Journal of Artificial Intelligence
    • /
    • v.6 no.1
    • /
    • pp.16-20
    • /
    • 2018
  • The development of modern information technology has increased the amount of big data about patients' information and diseases. In this study, we developed a prediction model of diabetes using the health examination data provided by the public data portal in 2016. In addition, we graphically visualized diabetes incidence by sex, age, residence area, and income level. As a result, the incidence of diabetes was different in each residence area and income level, and the probability of accurately predicting male and female was about 65%. In addition, it can be confirmed that the influence of X on male and Y on female is highly to affect diabetes. This predictive model can be used to predict the high-risk patients and low-risk patients of diabetes and to alarm the serious patients, thereby dramatically improving the re-admission rate. Ultimately it will be possible to contribute to improve public health and reduce chronic disease management cost by continuous target selection and management.

The Investigation of Employing Supervised Machine Learning Models to Predict Type 2 Diabetes Among Adults

  • Alhmiedat, Tareq;Alotaibi, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2904-2926
    • /
    • 2022
  • Currently, diabetes is the most common chronic disease in the world, affecting 23.7% of the population in the Kingdom of Saudi Arabia. Diabetes may be the cause of lower-limb amputations, kidney failure and blindness among adults. Therefore, diagnosing the disease in its early stages is essential in order to save human lives. With the revolution in technology, Artificial Intelligence (AI) could play a central role in the early prediction of diabetes by employing Machine Learning (ML) technology. In this paper, we developed a diagnosis system using machine learning models for the detection of type 2 diabetes among adults, through the adoption of two different diabetes datasets: one for training and the other for the testing, to analyze and enhance the prediction accuracy. This work offers an enhanced classification accuracy as a result of employing several pre-processing methods before applying the ML models. According to the obtained results, the implemented Random Forest (RF) classifier offers the best classification accuracy with a classification score of 98.95%.

Risk Prediction Using Genome-Wide Association Studies on Type 2 Diabetes

  • Choi, Sungkyoung;Bae, Sunghwan;Park, Taesung
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.138-148
    • /
    • 2016
  • The success of genome-wide association studies (GWASs) has enabled us to improve risk assessment and provide novel genetic variants for diagnosis, prevention, and treatment. However, most variants discovered by GWASs have been reported to have very small effect sizes on complex human diseases, which has been a big hurdle in building risk prediction models. Recently, many statistical approaches based on penalized regression have been developed to solve the "large p and small n" problem. In this report, we evaluated the performance of several statistical methods for predicting a binary trait: stepwise logistic regression (SLR), least absolute shrinkage and selection operator (LASSO), and Elastic-Net (EN). We first built a prediction model by combining variable selection and prediction methods for type 2 diabetes using Affymetrix Genome-Wide Human SNP Array 5.0 from the Korean Association Resource project. We assessed the risk prediction performance using area under the receiver operating characteristic curve (AUC) for the internal and external validation datasets. In the internal validation, SLR-LASSO and SLR-EN tended to yield more accurate predictions than other combinations. During the external validation, the SLR-SLR and SLR-EN combinations achieved the highest AUC of 0.726. We propose these combinations as a potentially powerful risk prediction model for type 2 diabetes.

Prediction of Type 2 Diabetes Remission after Bariatric or Metabolic Surgery

  • Park, Ji Yeon
    • Journal of Obesity & Metabolic Syndrome
    • /
    • v.27 no.4
    • /
    • pp.213-222
    • /
    • 2018
  • Bariatric surgery has evolved from a surgical measure for treating morbid obesity to an epochal remedy for treating metabolic syndrome as a whole, which is represented by type 2 diabetes mellitus. Numerous clinical trials have advocated bariatric or metabolic surgery over nonsurgical interventions because of markedly superior metabolic outcomes in morbidly obese patients who satisfy traditional criteria for bariatric surgery (body mass index [BMI] >$35kg/m^2$) and in less obese or simply overweight patients. Nevertheless, not all diabetes patients achieve the most desirable outcomes; i.e., diabetes remission after metabolic surgery. Thus, candidates for metabolic surgery should be carefully selected based on comprehensive preoperative assessments of the risk-benefit ratio. Predictors for diabetes remission after metabolic surgery may be classified into two groups based on mechanism of action. The first is indices for preserved pancreatic beta-cell function, including younger age, shorter duration of diabetes, and higher C-peptide level. The second is the potential for an insulin resistance reduction, including higher baseline BMI and visceral fat area. Several prediction models for diabetes remission have been suggested by merging these two to guide the joint decision-making process between clinicians and patients. Three such models, DiaRem, ABCD, and individualized metabolic surgery scores, provide an intuitive scoring system and have been validated in an independent external cohort and can be utilized in routine clinical practice. These prediction models need further validation in various ethnicities to ensure universal applicability.

Analysis of Dietary Factors of Chronic Disease Using a Neural Network (신경망을 이용한 만성질병에 영향을 미치는 식이요인 분석연구)

  • 이심열;백희영;유송민
    • Korean Journal of Community Nutrition
    • /
    • v.4 no.3
    • /
    • pp.421-430
    • /
    • 1999
  • A neural network system was applied in order to analyze the nutritional and other factors influencing chronic diseases. Five different nutrition evaluation methods including SD Score, %RDA, NAR INQ and %RDA-SD Score were utilized to facilitate nutrient data for the system. Observing top three chronic disease prediction ratio, WHR using SD Score was the most frequently quoted factor revealing the highest predication rate as 62.0%. Other high prediction rates using other data processing methods are as follows. Prediction rate with %RDA, NAR, INQ and %RDA-SD Score were 58.5%(diabetes), 53.5%(hyperlipidemia), 51.6%(diabetes), and 58.0%(diabetes)respectively. Higher prediction rate was observed using either NAR or INQ for obesity as 51.7% and 50.9% compared to the previous result using SD Score. After reviewing appearance rate for all chronic disease and for various data processing method used, it was found that iron and vitamin C were the most frequently cited factors resulting in high prediction rate.

  • PDF

Development of Type 2 Prediction Prediction Based on Big Data (빅데이터 기반 2형 당뇨 예측 알고리즘 개발)

  • Hyun Sim;HyunWook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.999-1008
    • /
    • 2023
  • Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.

Diabetes Prediction with the TCN-Prophet model using UCI Machine Learning Repository (UCI machine learning repository 사용한 TCN-Prophet 기반 당뇨병 예측 )

  • Tan Tianbo;Inwhee Joe
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.325-327
    • /
    • 2023
  • Diabetes is a common chronic disease that threatens human life and health, and its prevalence remains high because its mechanisms are complex, further its etiology remains unclear. According to the International Diabetes Federation (IDF), there are 463 million cases of diabetes in adults worldwide, and the number is growing. This study aims to explore the potential influencing factors of diabetes by learning data from the UCI diabetes dataset, which is a multivariate time series dataset. In this paper we propose the TCN-prophet model for diabetes. The experimental results show that the prediction of insulin concentration by the TCN-prophet model provides a high degree of consistency, compared to the existing LSTM model.

Development of Diabetes Mellitus prediction model using artificial neural network (당뇨병 예측을 위한 신경망 모델 개발에 관한연구)

  • 서혜숙;최진욱;김희식
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.67-70
    • /
    • 1998
  • There were many cases to apply artificial intelligence to medicine. In this paper, we present the prediction model of the development of the NIDDM(noninsulin-dependent diabetes mellitus). It is not difficult that doctor diagnose patient as DM(diabetes mellitus). However NIDDM is usually developmented later on 40 years old and symptom appeares gradually. So screening test or prediction model is needed absolutely. Our model predicts development of NIDDM with still normal data 2 year ago. Prediction models developed are both MLP(multilayer perceptron) with backpropagation training and RBFN(radial basis function network). Performance of both models were evaluated with likelihood ratio. MLP was about two and RBFN was about three. We expect that models developed can prevent development of DM and utilize normal data.

  • PDF

Statistical RBF Network with Applications to an Expert System for Characterizing Diabetes Mellitus

  • Om, Kyong-Sik;Kim, Hee-Chan;Min, Byoung-Goo;Shin, Chan-So;Lee, Hong-Kyu
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.3
    • /
    • pp.355-365
    • /
    • 1998
  • The purposes of this study are to propose a network for the characterizing of the input data and to show how to design predictive neural net재가 expert system which doesn't need previous knowledge base. We derived this network from the radial basis function networks(RBFN), and named it as a statistical EBFN. The proposed network can replace the statistical methods for analyzing dynamic relations between target disease and other parameters in medical studies. We compared statistical RBFN with the probabilistic neural network(PNN) and fuzzy logic(FL). And we testified our method in the diabetes prediction and compared our method with the well-known multilayer perceptron(MLP) neural network one, and showed good performance of our network. At last, we developed the diabetes prediction expert system based on the proposed statistical RBFN without previous knowledge base. Not only the applicability of the characterizing of parameters related to diabetes and construction of the diabetes prediction expert system but also wide applicabilities has the proposed statistical RBFN to other similar problems.

  • PDF

Diabetes prediction mechanism using machine learning model based on patient IQR outlier and correlation coefficient (환자 IQR 이상치와 상관계수 기반의 머신러닝 모델을 이용한 당뇨병 예측 메커니즘)

  • Jung, Juho;Lee, Naeun;Kim, Sumin;Seo, Gaeun;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1296-1301
    • /
    • 2021
  • With the recent increase in diabetes incidence worldwide, research has been conducted to predict diabetes through various machine learning and deep learning technologies. In this work, we present a model for predicting diabetes using machine learning techniques with German Frankfurt Hospital data. We apply outlier handling using Interquartile Range (IQR) techniques and Pearson correlation and compare model-specific diabetes prediction performance with Decision Tree, Random Forest, Knn (k-nearest neighbor), SVM (support vector machine), Bayesian Network, ensemble techniques XGBoost, Voting, and Stacking. As a result of the study, the XGBoost technique showed the best performance with 97% accuracy on top of the various scenarios. Therefore, this study is meaningful in that the model can be used to accurately predict and prevent diabetes prevalent in modern society.