• Title/Summary/Keyword: Diabetes mellitus, permanent neonatal

Search Result 3, Processing Time 0.016 seconds

Successful sulfonylurea treatment in a patient with permanent neonatal diabetes mellitus with a novel KCNJ11 mutation

  • Ahn, Sung Yeon;Kim, Gu-Hwan;Yoo, Han-Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.8
    • /
    • pp.309-312
    • /
    • 2015
  • Permanent neonatal diabetes mellitus refers to diabetes that occurs before the age of 6 months and persists through life. It is a rare disorder affecting one in 0.2-0.5 million live births. Mutations in the gene KCNJ11, encoding the subunit Kir6.2, and ABCC8, encoding SUR1 of the ATP-sensitive potassium ($K_{ATP}$) channel, are the most common causes of permanent neonatal diabetes mellitus. Sulfonylureas close the $K_{ATP}$ channel and increase insulin secretion. KCNJ11 and ABCC8 mutations have important therapeutic implications because sulfonylurea therapy can be effective in treating patients with mutations in the potassium channel subunits. The mutation type, the presence of neurological features, and the duration of diabetes are known to be the major factors affecting the treatment outcome after switching to sulfonylurea therapy. More than 30 mutations in the KCNJ11 gene have been identified. Here, we present our experience with a patient carrying a novel p.H186D heterozygous mutation in the KCNJ11 gene who was successfully treated with oral sulfonylurea.

Transient Neonatal Diabetes Mellitus Managed with Continuous Subcutaneous Insulin Infusion (CSII) and Continuous Glucose Monitoring

  • Kim, Min Soo;Kim, Sung Eun;Lee, Na Yeong;Kim, Seul Ki;Kim, Shin Hee;Cho, Won Kyoung;Cho, Kyoung Soon;Jung, Min Ho;Suh, Byung-Kyu;Ahn, Moon Bae
    • Neonatal Medicine
    • /
    • v.28 no.1
    • /
    • pp.41-47
    • /
    • 2021
  • Neonatal diabetes mellitus can be categorized as transient, permanent, or syndromic, and approximately half of the cases are transient. We present a case involving a term newborn who showed overt progression of transient neonatal diabetes mellitus, with complete remission within 6 months. On the second day of life, the patient presented with tachypnea, hyperglycemia, and decreased serum levels of C-peptide and insulin. Continuous subcutaneous infusion of insulin and continuous glucose monitoring were well tolerated. The patient showed a normal growth pattern, with no hyperglycemic or hypoglycemic episodes at 6 months of age. As it is rare and often asymptomatic, hyperglycemia may be attributed to various factors, including intrauterine environment, perinatal stress, and diverse genetic background. Therefore, consistent blood glucose monitoring and prompt early insulin therapy are crucial for any term newborns with persistent hyperglycemia, to prevent further diabetic complications. Moreover, continuous subcutaneous insulin infusion and the utilization of continuous glucose monitoring devices are the most effective and practical management strategies.

Neonatal Diabetes Mellitus Due to KCNJ11 (KIR6.2) Mutation Successfully Treated with Sulfonylurea

  • Jang, Sehun;Yang, Misun;Ahn, So Yoon;Sung, Se In;Chang, Yun Sil;Park, Won Soon
    • Neonatal Medicine
    • /
    • v.28 no.2
    • /
    • pp.94-98
    • /
    • 2021
  • Neonatal diabetes mellitus (NDM) is a rare disease that occurs at less than 6 months of age and is presumably caused by a mutation in the gene that affects pancreatic beta-cell function. Approximately 80% of NDM cases reveal a known genetic mutation, and mutations in potassium inwardly rectifying channel subfamily J member 11 (KCNJ11) and ABCC8 affecting the pancreatic beta-cell adenosine triphosphate-sensitive potassium channel may be treated with oral sulfonylurea. Early recognition of mutations in KCNJ11 and ABCC8 is important because early administration of sulfonylurea can not only control blood glucose levels but also improve neurodevelopmental outcomes. In the present study, we report a case of NDM that initially presented as diabetic ketoacidosis at the age of 1 month, accompanied by seizures during hospitalization. After confirmation of the KCNJ11 gene mutation (c.989A>C), we started administering oral sulfonylurea (glimepiride) at the age of 2 months. After gradually increasing the dosage of glimepiride, insulin was discontinued at the age of 3 months. To date, the infant's blood glucose levels have been well controlled without significant hypoglycemic events. No further episodes of seizures have occurred, and his developmental status is favorable.