• 제목/요약/키워드: Dexamethasone treatment

검색결과 243건 처리시간 0.024초

Effects of Ethyl Acetate Extract of Poncirus trifoliata Fruit for Glucocorticoid-Induced Osteoporosis

  • Yoon, Hyung-Young;Cho, Yun-Seok;Jin, Qinglong;Kim, Hyun-Gyu;Woo, Eun-Rhan;Chung, Yoon-Sok
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.89-95
    • /
    • 2012
  • Poncirus trifoliata fruit (PTF) affects the digestive and cardiovascular systems, and kidney function. The authors studied the effects of ethyl acetate (EtOAc) extract of PTF on the activities of osteoblasts and in an animal model. The main compounds of the EtOAc extract, naringin and poncirin have been confirmed by HPLC and NMR analysis. Effects of osteoblastic differentiation were measured by alkaline phosphatase (ALP) activity, osteopontin (OPN) protein expression and osteoprotegerin (OPG) mRNA expression in MC3T3-E1 cells. Also, osteoclast differentiation was measured by multinucleated cells (MNCs) formation through tartrate resistance acid phosphatase (TRAP)-positive staining. Bone mineral density (BMD) was measured before and after treatment with EtOAc extract of PTF in prednisolone-induced osteoporotic mice. Dexamethasone (DEX) decreased OPN and OPG expression level in MC3T3-E1 cells and ALP activity was decreased by DEX dose-dependently. EtOAc extract of PTF recovered the levels of ALP activity, and the expression of OPN and OPG in MC3T3-E1 cells treated with DEX. In osteoclast differentiation, multinucleated TRAP-positive cell formation was significantly suppressed by the EtOAc extract of PTF. Total body BMD was restored by EtOAc extract of PTF in prednisolone-induced osteoporotic mice. In conclusion, EtOAc extract of PTF recovered DEX-mediated deteriorations in osteoblastic and osteoclastic functions, and increased BMD in glucocorticoid-induced osteoporosis.

rSj26 또는 화학 항원 유도 아토피 피부염 마우스 모델에서 가감보중익기탕의 면역 매개물 조절 및 상처치료 효과 (Effects of Gagambojungikgi-tang on the Immune Mediators Regulation and Wound Healing in the rSj26 or Chemical Antigen induced Atopic Dermatitis Model Mice)

  • 허정훈;송한나;장선일
    • 대한본초학회지
    • /
    • 제23권1호
    • /
    • pp.53-61
    • /
    • 2008
  • Objectives : The aim of this study was to investigative the effects of Gagambojungikgi-tang (GBT), a Korean herbal medicine, on the immune mediators, T cell proliferation and wound healing in the recombinant Sj26 (rSj26) antigen induced atopic dermatitis(AD) model mice. Methods : GBT is the water extracts prepared from mixture of Ginseng Radix, Astragali Radix, Angelicae gigantis Radix, Atractylodes Rhizoma alba, Aurantii nobilis Pericarpium, Glycyrrhizae Radix, Artemisia iwayomogi Herba, Scutellaria Radix, Lonicera japonica Flos. This is a modified prescription of Bojungikgi-tang, which has been used for the treatment of indigestion, and immunological disease in east-asian countries. GBT was orally administered or externally applied at difference doses. The levels of immune mediators [(IgE, IgG1, prostaglandin E2 (PGE2), Th1/Th2 cytokines], T cell proliferation, and wound healing in the rSj26 or chemical antigen induced AD model BALB/c were investigated. Results : GBT dose-dependently suppressed the release of TNF-${\alpha}$, IL-$1{\beta}$ (Th1 cytokines), IL-4, IL-10 (Th2 cytokines), PGE2 (inflammatory mediators) and T cell proliferation. But GBT increased the production of IFN-${\gamma}$ (Th1 cytokine). Furthermore, A wound healing effect of GBT was similar to external application of dexamethasone. Conclusions : These results suggest that GBT suppresses the inflammatory mediators and regulates the Thl/Th2 cytokines, and promotes the wound healing. Therefore, these properties may contribute to the strong anti-AD effect of GBT.

  • PDF

Glucocorticoid Receptor Induced Down Regulation of Metalloproteinase-9 (bfMP-9) by Ginseng Components, Panaxadiol (PD) and Panaxatriol (PT), Contributes to Inhibition of the Invasive Capacity of HTl080 Human Fibrosarcoma Cells

  • Park, Moon-Taek;Cha, Hee-Jae;Jeong, Joo-Won;Kim, Shin-Il;Kim, Kyu-Won
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.224-230
    • /
    • 1998
  • This study showed the anti-invasive activity of ginseng components, panaxadiol (PD) and panamatrlol (PT) on the highly metastatic HT1080 human flbrosarcoma cell line. PD and PT reduced tumor cell invasion through a reconstitute basement membrane in the transwell chamber. A significant down regulation of MMP-9 by PD and PT was detected by northern blot analysis. However, MMP-2 was constantly expressed. Quantitative gelatin based zymography confirmed a marked reduced expression of MMP-9 but not MMP-2 in the treatment of PD and PT. Since the chemical structures of PD and PT are very similar to that of dexamethasone, a synthetic glucocorticoid, it was investigated whether PD and PT act through GR. Western blot analysis and immunocytochemistry showed that PD and PT increased the GR fraction in the nucleus. These results suggest that ursolic acid may induce repression of MMP-9 by stimulating the nuclear translocation of GR and hence inhibiting the activity of AP-1 to TPA-responsible element of MMP-9 promoter region. In conclusion, we suggest that CR-induced down-regulation of MMP-9 by PD and PT contributes to reduce the invasive capacity of HT 1080 cells.

  • PDF

Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways

  • Lee, Ju Hee;Min, Dong Suk;Lee, Chan Woo;Song, Kwang Ho;Kim, Yeong Shik;Kim, Hyun Pyo
    • Journal of Ginseng Research
    • /
    • 제42권4호
    • /
    • pp.476-484
    • /
    • 2018
  • Background: Korean Red Ginseng (steamed and dried white ginseng, Panax ginseng Meyer) is well known for enhancing vital energy and immune capacity and for inhibiting cancer cell growth. Some clinical studies also demonstrated a therapeutic potential of ginseng extract for treating lung inflammatory disorders. This study was conducted to establish the therapeutic potential of ginseng saponins on the lung inflammatory response. Methods: From Korean Red Ginseng, 11 ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, and Rh2) were isolated. Their inhibitory potential and action mechanism were evaluated using a mouse model of lung inflammation, acute lung injury induced by intranasal lipopolysaccharide administration. Their anti-inflammatory activities were also examined in lung epithelial cell line (A549) and alveolar macrophage (MH-S). Results: All ginsenosides orally administered at 20 mg/kg showed 11.5-51.6% reduction of total cell numbers in bronchoalveolar lavage fluid (BALF). Among the ginsenosides, Rc, Re, Rg1, and Rh2 exhibited significant inhibitory action by reducing total cell numbers in the BALF by 34.1-51.6% (n = 5). Particularly, Re showed strong and comparable inhibitory potency with that of dexamethasone, as judged by the number of infiltrated cells and histological observations. Re treatment clearly inhibited the activation of mitogen-activated protein kinases, nuclear factor-${\kappa}B$, and the c-Fos component in the lung tissue (n = 3). Conclusion: Certain ginsenosides inhibit lung inflammatory responses by interrupting these signaling molecules and they are potential therapeutics for inflammatory lung diseases.

The New Phytoformula Containing Morus alba, Schizandra sinensis and Asparagus cochinchinensis Inhibits Lung Inflammation in vitro and in vivo

  • Jeong, Hyeon Gun;Lee, Chan Woo;Lee, Ju Hee;Kim, So Joong;Kwon, Yong Soo;Heo, Yisu;Kim, Hyun Pyo
    • Natural Product Sciences
    • /
    • 제22권1호
    • /
    • pp.70-75
    • /
    • 2016
  • A phytoformula containing the root barks of Morus alba, the fructus of Schizandra sinensis and the roots of Asparagus cochinchinensis (MSA) was prepared as a potential new herbal remedy, and its therapeutic potential for alleviating inflammatory lung conditions was examined. For in vivo evaluation, an animal model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice was used. With oral administration of 6 - 60 mg/kg, MSA potently and dose-dependently inhibited bronchitis-like symptoms in acute lung injury induced by intranasal treatment of LPS as judged by the number of cells in the bronchoalveolar lavage fluid (BALF) and histological observation. The inhibitory potency was comparable with that of dexamethasone. For in vitro assay, the effects on the production of proinflammatory molecules in lung epithelial cells and alveolar macrophages were examined. Although MSA inhibited IL-6 production in IL-$1{\beta}$-treated lung epithelial cells (A549) only at a high concentration ($300{\mu}g/ml$), the formula strongly and concentration-dependently inhibited NO production in LPS-treated alveolar macrophages (MH-S) at $20-300{\mu}g/ml$. Based on all of these findings, the new phytoformula MSA is suggested to have the potential to control inflammatory lung diseases including bronchitis, at least in part, by inhibiting inducible nitric oxide synthase-catalyzed NO production.

보골탕이 Monosodium Iodoacetate 유도 골관절염과 Interleukin-1β 유도 연골세포에 미치는 보호 효과 (Protective Effects of Bogol-tang on Monosodium Iodoacetate-induced Osteoarthritis and Interleukin-1β-treated Primary Chondrocytes)

  • 성진욱;이해웅;강경화;김경민;조성우
    • 한방재활의학과학회지
    • /
    • 제29권2호
    • /
    • pp.101-113
    • /
    • 2019
  • Objectives Bogol-tang has clinically been used to protect joint cartilage and to treat osteoarthritis. Our objective was to study the protective effect of Bogol-tang extract (BGT) in functional impairment, behavioral disorders, cartilage loss and pathological changes in a monoiodoacetate (MIA)-induced murine osteoarthritis (OA) model and interleukin (IL)-$1{\beta}$ -treated primary rat chondrocytes. Methods Mouse knee joints were injected with MIA, a chemical that inhibits glycolysis and causes joint inflammation and matrix loss. MIA-OA induced mice orally administered BGT or acetaminophen (AAP) for 18 days by daily. Primary rat chondrocytes were pretreated with BGT or dexamethasone (DEX) and followed by co-incubation with IL-$1{\beta}$ (10 ng/mL). Results In MIA-OA mice model, BGT led to delayed response on hot plate analysis, and suppressed the cartilage loss and damages in joint tissues. BGT suppressed the elevated levels of inflammatory mediators, nitrite and $PGE_2$, the gene expression of matrix degrading enzymes, and extracellular-signal-regulated kinases 1/2 and c-JunN-terminal kinase phosphorylation in IL-$1{\beta}$-treated primary rat chondrocytes. Conclusions Our results suggest that BGT improve the knee joint function and delay the cartilage damages by anti-nociceptive, anti-inflammatory and ant-catabolic effects, which indicate BGT could be a potential candidate for osteoarthritis treatment.

Tiotropium Bromide Has a More Potent Effect Than Corticosteroid in the Acute Neutrophilic Asthma Mouse Model

  • An, Tai Joon;Kim, Ji Hye;Park, Chan Kwon;Yoon, Hyoung Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • 제85권1호
    • /
    • pp.18-24
    • /
    • 2022
  • Background: Neutrophilic asthma (NeuA) is usually resistant to corticosteroids. Tiotropium bromide (TIO) is a bronchodilator that is used as an add-on therapy to inhaled corticosteroid and long-acting β2 agonist in asthma treatment. However, the role of TIO in NeuA is not fully known. Thus, the aim of this study was to evaluate the effect of TIO on NeuA compared to that of corticosteroids. Methods: C57BL/6 female mice were sensitized with ovalbumin and lipopolysaccharide to induce neutrophilic inflammation. Dexamethasone (DEX) was administered on days 14, 17, 20, and 23. TIO was inhaled on days 21, 21, and 23. On day 24, mice were sacrificed. Airway hyper-responsiveness, levels of cytokines in bronchoalveolar lavage (BAL) and lung homogenates, and lung tissue histopathology were compared between the two groups. Results: Neutrophil counts, T helper 2 cells (TH2)/TH17 cytokines, and pro-inflammatory cytokine in BAL fluids were elevated in the NeuA group. TIO group showed lower total cells, neutrophil counts, and eosinophil counts in BAL fluids than the DEX group (p<0.001, p<0.05, and p<0.001, respectively). Airway resistance was attenuated in the TIO group but elevated in the NeuA group (p<0.001). Total protein, interleukin (IL)-5, and IL-17A levels in BAL fluids were lower in the TIO group than in the NeuA group (all p<0.05). Conclusion: TIO showed more potent effects than DEX in improving airway inflammation and attenuating airway resistance in NeuA.

Effects on Goat Meat Extracts on α-Glucosidase Inhibitory Activity, Expression of Bcl-2-Associated X (BAX), p53, and p21 in Cell Line and Expression of Atrogin-1, Muscle Atrophy F-Box (MAFbx), Muscle RING-Finger Protein-1 (MuRF-1), and Myosin Heavy Chain-7 (MYH-7) in C2C12 Myoblsts

  • Joohyun Kang;Soyeon Kim;Yewon Lee;Jei Oh;Yohan Yoon
    • 한국축산식품학회지
    • /
    • 제43권2호
    • /
    • pp.359-373
    • /
    • 2023
  • This study examined the α-glucosidase inhibitory, and apoptosis- and anti-muscular-related factors of goat meat extracts from forelegs, hind legs, loin, and ribs. The goat meat extracts were evaluated for their α-glucosidase inhibitory activity. The gene and protein expression levels of Bcl-2-associated X (bax), p53, and p21 were examined by reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting in AGS and HT-29 cells. The expression levels of Atrogin-1 and MHC1b were examined by RT-PCR in C2C12 myoblasts, and the expression levels of Atrogin-1, muscle atrophy F-box (MAFbx), muscle RING-finger protein-1 (MuRF-1), and myosin heavy chain-7 were investigated by immunoblotting. α-Glucosidase inhibitory activity was higher in ethanol extract than in hydrous and hot water extracts. BAX and p53 expression levels were higher (p<0.05) in AGS cells treated with goat meat extract than those of cells treated with no goat meat extract. In HT-29 cells, the protein expression levels of BAX, p53, and p21 were higher (p<0.05) in the cells treated with goat meat extract than those of cells not treated with goat meat extract. In dexamethasone-treated C2C12 cells, goat meat extract treatment lower (p<0.05) the expression of Atrogin-1 and lower (p<0.05) the expression of MAFbx and MuRF-1. The results of the present study indicate that goat meat extracts have α-glucosidase inhibitory activity in vitro. In addition, apoptosis was induced in AGS cells and HT-29 cells treated with goat meat extract, and anti-muscular atrophy activity was also observed in C2C12 cells treated with goat meat extract.

Effects of Horse Meat Hydrolysate on Oxidative Stress, Proinflammatory Cytokines, and the Ubiquitin-Proteasomal System of C2C12 Cells

  • Hee-Jeong Lee;Dongwook Kim;Kyoungtag Do;Chang-Beom Yang;Seong-Won Jeon;Aera Jang
    • 한국축산식품학회지
    • /
    • 제44권1호
    • /
    • pp.132-145
    • /
    • 2024
  • Sarcopenia, the age-related muscle atrophy, is a serious concern as it is associated with frailty, reduced physical functions, and increased mortality risk. Protein supplementation is essential for preserving muscle mass, and horse meat can be an excellent source of proteins. Since sarcopenia occurs under conditions of oxidative stress, this study aimed to investigate the potential anti-muscle atrophy effect of horse meat hydrolysate using C2C12 cells. A horse meat hydrolysate less than 3 kDa (A4<3kDa) significantly increased the viability of C2C12 myoblasts against H2O2-induced cytotoxicity. Exposure of C2C12 myoblasts to lipopolysaccharide led to an elevation of cellular reactive oxygen species levels and mRNA expression of proinflammatory cytokines, including tumor necrosis factor-α and interleukin 6, and these effects were attenuated by A4<3kDa treatment. Additionally, A4<3kDa activated protein synthesis-related proteins through the protein kinase B/mechanistic target of rapamycin pathway, while decreasing the expression of activity and degradation-related proteins, such as Forkhead box O3, muscle RING finger protein-1, and Atrogin-1 in dexamethasone-treated C2C12 myotubes. Therefore, the natural material A4<3kDa has the potential of protecting against muscle atrophy, while further in vivo study is needed.

The Anti-apoptotic Effect of Ghrelin on Restraint Stress-Induced Thymus Atrophy in Mice

  • Jun Ho Lee;Tae-Jin Kim;Jie Wan Kim;Jeong Seon Yoon;Hyuk Soon Kim;Kyung-Mi Lee
    • IMMUNE NETWORK
    • /
    • 제16권4호
    • /
    • pp.242-248
    • /
    • 2016
  • Thymic atrophy is a complication that results from exposure to many environmental stressors, disease treatments, and microbial challenges. Such acute stress-associated thymic loss can have a dramatic impact on the host's ability to replenish the necessary naïve T cell output to reconstitute the peripheral T cell numbers and repertoire to respond to new antigenic challenges. We have previously reported that treatment with the orexigenic hormone ghrelin results in an increase in the number and proliferation of thymocytes after dexamethasone challenge, suggesting a role for ghrelin in restraint stress-induced thymic involution and cell apoptosis and its potential use as a thymostimulatory agent. In an effort to understand how ghrelin suppresses thymic T cell apoptosis, we have examined the various signaling pathways induced by receptor-specific ghrelin stimulation using a restraint stress mouse model. In this model, stress-induced apoptosis in thymocytes was effectively blocked by ghrelin. Western blot analysis demonstrated that ghrelin prevents the cleavage of pro-apoptotic proteins such as Bim, Caspase-3, and PARP. In addition, ghrelin stimulation activates the Akt and Mitogen-activated protein kinases (MAPK) signaling pathways in a time/dose-dependent manner. Moreover, we also revealed the involvement of the FoxO3a pathway in the phosphorylation of Akt and ERK1/2. Together, these findings suggest that ghrelin inhibits apoptosis by modulating the stress-induced apoptotic signal pathway in the restraint-induced thymic apoptosis.