• Title/Summary/Keyword: Development velocity

Search Result 2,232, Processing Time 0.031 seconds

NDE of Low-Velocity Impact Damage in GFRP Using Infrared Thermography Techniques

  • Kim, Ghiseok;Lee, Kye-Sung;Hur, Hwan;Kim, Sun-Jin;Kim, Geon-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.206-214
    • /
    • 2015
  • In this study, low-velocity impact damage (LVID) in glass fiber reinforced plastic (GFRP) was investigated using pulse thermography (PT) and lock-in thermography (LIT) techniques. The main objective of this study was to evaluate the detection performance of each technique for LVID in GFRP. Unidirectional and cross-ply GFRPs were prepared with four energy levels using a drop weight impact machine and they were inspected from the impact side, which may be common in actual service conditions. When the impacted side was used for both inspection and thermal loading, results showed that the suggested techniques were able to identify the LVID which is barely visible to the naked eye. However, they also include limitations that depend on the GFRP thickness at the location of the delamination produced by the lowest impact energy of five joule.

Effect of ambient conditions on the spray development and atomization characteristics of a gasoline spray injected through a direct injection system (분위기 조건이 직접 분사식 가솔린 분무의 발달 과정 및 미립화 특성에 미치는 영향)

  • Ha, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.47-53
    • /
    • 2005
  • This paper presents the effects of ambient pressure on atomization characteristics of high-Pressure injector in a direct injection gasoline engine both experimentally and numerically. The atomization characteristics such as mean droplet size, mean velocity, and velocity distribution were measured by phase Doppler particle analyzer. The spray development, spray penetration, and global spray structure were visualized using a shadowgraph technique. In order to investigate the atomization process numerically, the LISA-DDB hybrid model was utilized. This breakup model assumes that the primary breakup occurs when the amplitude of the unstable waves is equal to the radius of the ligament of liquid sheet near the nozzle and the droplet deformation induces the secondary breakup. The results provide the effect of ambient pressure on the macroscopic and microscopic behaviors such as spray development, spray penetration, mean droplet size, and mean velocity distribution. It is also revealed that the accuracy of prediction of LISA-DDB hybrid model is pretty good in terms of spray developing process, spray tip penetration, and SMD distribution.

  • PDF

High-Velocity Impact Damage Behavior of Carbon/Epoxy Composite Laminates

  • Kim, Young A.;Woo, Kyeongsik;Cho, Hyunjun;Kim, In-Gul;Kim, Jong-Heon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.190-205
    • /
    • 2015
  • In this paper, the impact damage behavior of USN-150B carbon/epoxy composite laminates subjected to high velocity impact was studied experimentally and numerically. Square composite laminates stacked with $[45/0/-45/90]_{ns}$ quasi-symmetric and $[0/90]_{ns}$ cross-ply stacking sequences and a conical shape projectile with steel core, copper skin and lead filler were considered. First high-velocity impact tests were conducted under various test conditions. Three tests were repeated under the same impact condition. Projectile velocity before and after penetration were measured by infrared ray sensors and magnetic sensors. High-speed camera shots and C-Scan images were also taken to measure the projectile velocities and to obtain the information on the damage shapes of the projectile and the laminate specimens. Next, the numerical simulation was performed using explicit finite element code LS-DYNA. Both the projectile and the composite laminate were modeled using three-dimensional solid elements. Residual velocity history of the impact projectile and the failure shape and extents of the laminates were predicted and systematically examined. The results of this study can provide the understanding on the penetration process of laminated composites during ballistic impact, as well as the damage amount and modes. These were thought to be utilized to predict the decrease of mechanical properties and also to help mitigate impact damage of composite structures.

The Effect of Dynamic Visual-Motor Integration Training on the Visual Perception Reaction Velocity (역동적 시각-운동 통합 훈련이 시지각 처리 속도에 미치는 영향)

  • Song, Minok;Lee, Eunsil;Park, Sungho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.4
    • /
    • pp.37-42
    • /
    • 2015
  • Purpose: This study was conducted to test the impact of The Dynamic Visual-Motor integration training has effect on the visual perception reaction velocity. Dynavision were used to measure data from the participating 24 students(K college). Method : The participants were the 24 students of 'K' College in Busan in there twenties. They were divided into the The Dynamic Visual-Motor integration training group and the control group. To know if the Dynamic Visual-Motor integration training has effect on the visual perception reaction velocity, the Dynamic Visual-Motor integration training was implemented triweekly for 4 weeks. In Dynamic Visual-Motor integration training the ball should be grasped with one hand and threw by an arm. Only the balls threw beyond the objective point were counted. The visual perception reaction velocity and the number of response were measured before and after experiment by Dynavision. Result : Firstly, the visual perception reaction velocity was increased in Dynamic Visual-Motor integration training group compared with control group. Secondly, the number of response was also increased in Dynamic Visual-Motor integration training group compared with control group. Conclusion : As a result of The Dynamic Visual-Motor integration training has an effect on the visual perception reaction velocity and the number of response. The Dynamic Visual-Motor integration training seems to be effective for cerebral apoplexy patient who has visual perceptional disability or cerebral palsy child in training for visual perceptional development or daily living activities development. Study participated by more detailed and practical patients in hospital is needed.

Laboratory/In situ Sound Velocities of Shelf Sediments in the South Sea of Korea

  • Kim, Dae-Choul;Kim, Gil-Young;Jung, Ja-Hun;Seo, Young-Kyo;Wilkens, Roy H.;Yoo, Dong-Geun;Lee, Gwang-Hoon;Kim, Jeong-Chang;Yi, Hi-Il;Cifci, Gunay
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.103-112
    • /
    • 2008
  • Compressional sound velocities of shelf sediments in the South Sea of Korea, were measured in situ and in the laboratory for six cores. In situ sound velocity was measured using the Acoustic Lance (frequency of 7.5-15 kHz), while laboratory velocity was measured by the pulse transmission technique (frequency of 1MHz). Physical properties were relatively uniform with sediment depth, suggesting little effect of sediment compaction and/or consolidation. Average in situ velocity at each core site ranged from 1,457 to 1,488 m/s, which was less than the laboratory velocity of 1,503 and 1,604m/s. In muddy sediments the laboratory velocity was 39-47 m/s higher than in situ velocity. In sandy sediments, the difference was greater by an average of 116 m/s. Although the velocity data were corrected by the velocity ratio method based on bottom water temperature, the laboratory velocity was still higher than the in situ velocity (11-21 m/s in muddy sediments and 91 m/s in sandy sediments). This discrepancy may be caused by sediment disturbance during core collection and/or by the pressure of Acoustic Lance insertion, but it was most likely due to the frequency difference between in situ and laboratory measurement systems. Thus, when correcting laboratory velocity to in situ velocity, it is important to consider both temperature and frequency.

The Development of Velocity Ripple Controller Using Active Phase Compensation (능동형 위상보정을 이용한 정밀 속도리플 제어기의 개발)

  • Kang, Seok Il;Jeong, Jae Hyeon;Kim, Jung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.265-272
    • /
    • 2017
  • Velocity ripple in manufacturing processes reduces productivity and limits the precision of the product. In practice, the frequency and phase of velocity ripples always change minutely, which makes it impossible to compensate for the ripple by simply inserting an opposite feed-forward signal in the system. In this study, an active-phase compensation algorithm was developed to enable the velocity-ripple controller to track the phase change of the ripples in real time. The proposed controller can compensate for the velocity ripple whatever its cause, including disturbance by the torque ripple. The algorithm consists of three functional modules: the velocity-ripple extractor, the synchronized integrator, and the phase shifter. Experimental results showed that the proposed controller clearly reduces velocity ripples with phase variation.

X-band CW Doppler Radar Development for Measurement of Muzzle Velocity (포구 속도 측정을 위한 X-band CW 도플러 레이더 개발)

  • Kim, Jae-Heon;Koh, Yeong-Mok;NamGung, Sung-Won;Jang, Yong-Sik;Park, Yong-Seok;Ra, Keuk-Hwan;Choi, Ik-Kwon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.460-470
    • /
    • 2009
  • In this paper, we described the implementation of the X-Band continuous-wave doppler radar for muzzle velocity measurement. The radar is consisted of microwave transceiver, signal processor, power board, and the measuring program was developed for the operating and field test. The operating frequency of doppler radar is able to set ${\pm}3\;MHz$ with 5 channel from the center frequency, and the output power is 25 dBm. The minimum receiving power is -117 dBm. The radar would obtain the doppler frequency from the artillery, and calculate accurate velocity point and then estimate muzzle velocity. The performance test for this radar was done with 155 mm at barrel and tripod mounted, and also compared the performance with the reference radar. As a result, the performance of the our new radar is equal with the reference one.

Development of Parthenotes Produced by Various Treatments in Bovine

  • Lee, S. L.;J. G. Yoo;Park, G. J.;Lee, H. J.;S. Y. Choe
    • Proceedings of the KSAR Conference
    • /
    • 2001.10a
    • /
    • pp.62-62
    • /
    • 2001
  • Development of effective activation protocols is of great importance for improving the success of cloning and subsequent transgenic. Three methods for oocyte activation, including 5μM ionomycin (5 min) alone, ionomycin+1.9 mM 6-dimetylaminopurine (DMAP, 3 hrs) and ionomycin+10㎍/㎖ cycloheximide(CHX, 3 hrs) were compared for their effects of pronuclei(PN) formation, development, developmental velocity and ploidy of parthenotes to IVF control in bovine. In group of ionomycin+DMAP, the oocytes having more 3 PN were significantly(P〈0.05) higher than in groups of ionomycin alone and of ionomycin+CHX (45.5% vs. 0 and 0%, respectively). Activation with the ionomycin alone, ionomycin+DMAP and ionomycin+CHX resulted in cleavage rates of 30, 85.5 and 57.9%, respectively. The blastocysts rate of parthenotes activated by ionomycin+DMAP treatment was significantly higher (12.3%, P〈0.05) than those of other treated groups. Chromosome analysis shows that ionomycin+DMAP treatment greatly increases the incidence of chromosomal abnormality of the parthenotes. When compared the developmental velocity at 24 hrs after insemination and activation, 27% eggs in IVF control and 55% in DMAP treatment out of total cleaved eggs developed to 2-cell stage, respectively. Developmental velocity of parthenotes activated by ionomycin +DMAP treatment was significantly (P〈0.05) faster than others. From the results, we may conclude that DMAP treatment to the oocytes accelerates developmental velocity resulting in both the higher incidence of chromosome abnormality and of PN formation suggesting that CHX combined with ionomycin is suitable DMAP for the purpose of successful nuclear transplantation.

  • PDF

Geoacoustic Characteristics of P-Wave Velocity in Donghae City - Ulleung Island Line, East Sea: Preliminary Results (동해시-울릉도 해저 측선에서의 P파 속도 지음향 특성: 예비 결과)

  • Ryang, Woo-Hun;Kwon, Yi-Kyun;Jin, Jae-Hwa;Kim, Hyun-Tae;Lee, Chi-Won;Jung, Ja-Hun;Kim, Dae-Choul;Choi, Jin-Hyuk;Kim, Young-Gyu;Kim, Sung-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2E
    • /
    • pp.44-49
    • /
    • 2007
  • Donghae City - Ulleung Island Line (DC-UI Line) is a representative line for underwater and geoacoustic modeling in the middle western East Sea. In this line, an integrated model of P-wave velocity is proposed for a low-frequency range target (<200 Hz), based on high-resolution seismic profiles (2 - 7 kHz sonar and air-gun), shallow and deep cores (grab, piston, and Portable Remote Operated Drilling), and outcrop geology (Tertiary rocks and the basement on land). The basement comprises 3 geoacoustic layers of P-wave velocity ranging from 3750 to 5550 m/s. The overlying sediments consist of 7 layers of P-wave velocities ranging from 1500 to 1900 m/s. The bottom model shows that the structure is very irregular and the velocity is also variable with both vertical and lateral extension. In this area, seabed and underwater acousticians should consider that low-frequency acoustic modeling is very range-dependent and a detailed geoacoustic model is necessary for better modeling of acoustic propagation such as long-range surveillance of submarines and monitoring of currents.

A Study on the Development of CW(Continuous-Wave)Doppler System for measuring Bi-directional Blood Flow Information (혈류 방향을 구별하는 연속 초음파 도플러 장치에 관한 연구)

  • 강충신;김영길
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.75-80
    • /
    • 1987
  • With the conventional CW Doppler velocity meter, bl-directional velocities cannot be separated. The new CW Doppler system uses quadrature detection and phase rotation to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction, is fabricated. Specially, this system shows that phase rotation method for flow direction separation provides easy and satisfactory feature. From in vivo blood flow measurement, we can easily differentiate typical artery flow from vein flow, and measure both velocity characteristics qualitatively.

  • PDF