• Title/Summary/Keyword: Detonation Wave

Search Result 101, Processing Time 0.022 seconds

Three-dimensional Detonation Cell Structures in a Circular Tube

  • Cho, D.R.;Won, S.H.;Shin, Edward J.R.;Choi, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.597-601
    • /
    • 2008
  • Three-dimensional structures of detonation wave propagating in circular tube were investigated. Inviscid fluid dynamics equations coupled with a conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Variable-$\gamma$ formulation was used to account for the variable properties between unburned and burned states and the chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The computational code was parallelized based on domain decomposition technique using MPI-II message passing library. The computations were carried out using a home made Windows based PC cluster having 160 AMD AthloxXP and Athlon64 processor. The computational domain consisted of through a roundshaped tube with wall conditions. As an initial condition, analytical ZND solution was distributed over the computational domain with disturbances. The disturbances has circumferential large gradient. The unsteady computational results in three-dimension show the detailed mechanisms of multi-cell mode of detonation wave instabilities resulting diamond shape in smoked-foil record.

  • PDF

Detonation Characteristics of L. P. G /$O_2$Gas Mixture and the Self-Ignition Condition for the Formation of Detonative Wave (액화석유 가스 (L. P. G) 와 산소 혼합물의 폭발특성 및 점화조건에 관한 연구)

  • Sung Nak Choi;Kyu Sun Shim;Un Sik Kim;Sock Sung Yun;Ung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.394-402
    • /
    • 1986
  • Detonation reaction in L.P.G./$O_2$ mixture gas has been investigated over the L.P.G. concentration range of 3∼45 volume%. The variation of detonation velocity with mixture ratio is very interesting as it shows and inflection point near at the stoichiometric ratio. This might be ascribed to the fact that the detonation reactions at fuel-rich condition and fuel-lean condition proceed via different mechanisms. The maximum detonation velocity of 2.65km/sec occurs not at stoichiometric ratio(${\phi}$=1) but at fuel-rich condition (${\phi}$=1.57). Assuming that a stable detonation wave must propagates with the constant velocity, The upper and lower limit of detonation were determined and found to be 40.0 and 3.40 L.P.G. volume% respectively. The shock-heating technique was also utilized for the measurement of self-ignition temperature onsetting a stable detonation wave at varous mixture ratios. The self-ignition temperature at stoichiometric ratio is $742{\pm}3{\circ}K$ and the self-ignition temperature increases as the mixture ratio deviates from the stoichiometric condition.

  • PDF

Three-dimensional Numerical Analysis of Detonation Wave Structures in a Square Tube (정사각관 내 데토네이션 파 구조의 삼차원 수치 해석)

  • Cho, Deok-Rae;Won, Su-Hee;Shin, Jae-Ryul;Lee, Soo-Han;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Three dimensional structures of detonation waves propagating in a square tube were investigated using a high resolution CFD code coupled with a conservation equation of reaction progress variable and an one-step irreversible reaction. The code were parallelized based on domain decomposition technique using MPI library. The computations were carried on an in-house Windows cluster with AMD processors. Three-dimensional unsteady analysis results in the smoked-foil records caused by the instabilities of the detonation waves, which showed the rectangular and diagonal modes of detonation instabilities depending on the initial condition of disturbances and the spinning detonation for case of small reaction constant.

The Investigation of Detonation Characteristics of Ethylene Oxide Mixture by Using Incident Shock Tube Technique (입사 충격파관을 이용한 에틸렌 옥사이드 혼합물의 데토네이션 특성연구)

  • Moon, J.H.;Chung, J.D.;Kang, J.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.121-134
    • /
    • 1994
  • Shock tube investigation of ethylene oxide-$0_{2}-N_{2}$ mixture have been performed to reveal detonation characteristics of the mixture in terms of detonation pressure and speed. Theoretical calculation of thermodynamic parameters at the Chapmann-Jouguet detonation of the mixture has been also performed. A comparision of the observed results with the calculated ones can lead us to predict the detonation parameters of ethylene oxide in an artificial air. In addition, we have observed ignition delay times of ethylene oxide mixtures. The best fit of the observed delay times to Arrhenius gas kinetic relation gives : ${\tau}=10^{-144}{e{xp}}(E_a/RT)[C_{2}H_{4}O]^{-4.8}[O_{2}]^{-12.4}[N_{2}]^{-14.1}$ $E_a=3.67kcal/mole$ The observed activation energy is markedly reduced, compared with the case of ethylene oxide diluted in Ar. It could be due to the factor that $N_2$ play a role as detonation promoter yielding very reactive NOx radicals.

  • PDF

Deflagration to detonation transition by interaction between flame and shock wave in gas mixture (가스 연료와 공기 혼합물 내 압력파와 화염의 상호 작용에 의한 연소폭발천이 현상 연구)

  • Gwak, Min-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.369-374
    • /
    • 2010
  • This paper presents a numerical investigation of the Deflagration to Detonation Transition (DDT) of flame acceleration by a shock wave in combustible gas mixture. A model consisting of the reactive compressible Navier-Stokes equations is used. The effects of viscosity, thermal conduction, species diffusion, and chemical reactions are included. Using this model, the generation of hot spots by repeated shock and flame interaction in front and back of flame and the change of detonation occurrence by various shock intensities (Ms=1.1, 1.2, 1.3) are studied. The simulations show that as the incident shock intensity increases, the Richtmyer-Meshkov (RM) instability becomes stronger and DDT occurrence time is reduced.

  • PDF

The Formation of Detonation Wave and Acceleration Characteristics with the Ram Accelerator Projectile Shapes (램 가속기 탄체 형상에 따른 데토네이션파와 가속 특성에 관한 연구)

  • 전용희;이재우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.82-91
    • /
    • 1999
  • Projectile shapes of the superdetonative ram accelerator have great effects on shock structures, detonation wave formation, and ram acceleration characteristics. In this study, cone-cylinder-cone, a baseline projectile configuration of the superdetonative combustion mode, double-cone configurations and power-law shape, have been numerically investigated to analyze the effect of the front/rear configuration changes, on the flow field around the projectile, detonation wave formation process, and projectile acceleration characteristics. Hence, a ram projectile configuration with conspicuously improved acceleration characteristics has been proposed by adjusting the double cone angle and height. The results provide useful information for the ram accelerator design optimization study.

  • PDF

Numerical simulation of deflagration to detonation transition in bent tube (굽은 관에서의 연소폭발천이 현상 모델링)

  • Gwak, Min-Cheol;Kim, Ki-Hong;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.263-267
    • /
    • 2011
  • This paper presents a numerical investigation of the deflagration to detonation transition (DDT) of flame acceleration by a shock wave filled with an ethylene-air mixture in bent tube. A model consisting of the reactive compressible Navier-Stokes equations and the ghost fluid method (GFM) for complex boundary treatment is used. A various intensities of incident shock wave simulations show the generation of hot spots by shock-flame interaction and the accelerated flame propagation due to geometrical effect. Also the first detonation occurs nearly constant chemical heat release rate, 20 MJ/($g{\cdot}s$). Through our simulation's results, we concentrate the complex confinement effects in generating strong shock wave, shock-flame interaction, hot spot and DDT in pipe.

  • PDF

Numerical Simulation of Fracture Mechanism by Blasting using PFC2D (PFC2D에서의 발파에 의한 파괴 메커니즘의 수치적 모델링)

  • Jong, Yong-Hun;Lee, Chung-In;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.476-485
    • /
    • 2006
  • During blasting, both shock wave and gas are generated in detonation process of explosives and the generated wave and gas expansion may create new fractures and damage rock mass. In order to explain and understand completely the fracture mechanism by blasting, we have to consider both effects of the wave and gas expansion simultaneously. In this study, we use a discrete element code, PFC2D and develop an algorithm which is capable of modeling both detonation and gas pressures acting on blasthole wall and visualizing generated cracks within rock mass. Moreover, the gas-pressure modeling method which applies a corresponding external force of gas pressure to parent particles of radial fractures is adopted to simulate a coopting between rock mass and gas penetrating created radial fractures. The developed algorithm is verified by reproducing numerical simulations of a lab-scale test blast successfully.

Numerical Requirements for the Simulation of Detonation Cell Structures (데토네이션 셀 구조 모사를 위한 수치적 요구 조건)

  • Choi Jeong-Yeol;Cho Deok-Rae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-14
    • /
    • 2006
  • Present study examines the numerical issues of cell structure simulation for various regimes of detonation phenomena ranging from weakly unstable to highly unstable detonations. Inviscid fluid dynamics equations with $variable-{\gamma} $ formulation and one-step Arrhenius reaction model are solved by a MUSCL-type TVD scheme and 4th order accurate Runge-Kutta time integration scheme. A series of numerical studies are carried out for the different regimes of the detonation phenomena to investigate the computational requirements for the simulation of the detonation wave cell structure by varying the reaction constants and grid resolutions. The computational results are investigated by comparing the solution of steady ZND structure to draw out the minimum grid resolutions and the size of the computational domain for the capturing cell structures of the different regimes of the detonation phenomena.

On the Use of Standing Oblique Detonation Waves in a Shcramjet Combustor

  • Fusina, Giovanni;Sislian, Jean P.;Schwientek, Alexander O.;Parent, Bernard
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.671-686
    • /
    • 2004
  • The shock-induced combustion ramjet (shcramjet) is a hypersonic airbreathing propulsion concept which over-comes the drawbacks of the long, massive combustors present in the scramjet by using a standing oblique detonation wave (a coupled shock-combustion front) as a means of nearly instantaneous heat addition. A novel shcramjet combustor design that makes use of wedge-shaped flameholders to avoid detonation wave-wall interactions is proposed and analyzed with computational fluid dynamics (CFD) simulations in this study. The laminar, two-dimensional Navier-Stokes equations coupled with a non-equilibrium hydrogen-air combustion model based on chemical kinetics are used to represent the physical system. The equations are solved with the WARP (window-allocatable resolver for propulsion) CFD code (see: Parent, B. and Sislian, J. P., “The Use of Domain Decomposition in Accelerating the Convergence of Quasihyperbolic Systems”, J. of Comp. Physics, Vol. 179, No. 1,2002, pages 140-169). The solver was validated with experimental results found in the literature. A series of steady-state numerical simulations was conducted using WARP and it was deter-mined by means of thrust potential calculations that this combustor design is a viable one for shcramjet propulsion: assuming a shcramjet flight Mach number of twelve at an altitude of 36,000 m, the geometrical dimensions used for the combustor give rise to an operational range for combustor inlet Mach numbers between six and eight. Different shcramjet flight Mach numbers would require different combustor dimensions and hence a variable geometry system in or-der to be viable.

  • PDF