• Title/Summary/Keyword: Detonation Wave

Search Result 101, Processing Time 0.026 seconds

Detonation transmission with an abrupt change in area

  • Hsu, Yao-Chung;Chao, Yei-Chin;Chung, Kung-Ming
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.5
    • /
    • pp.533-550
    • /
    • 2018
  • Detonation transmission between propane/oxygen (donor) and propane/air (acceptor) with an abrupt area change is experimentally studied. In the donor, there are two types of incident detonation waves: A self-sustained Chapman-Jouguet (CJ) detonation wave and an overdriven detonation wave that is a result of the difference in the initial donor pressure ratios. The piston work is used to characterize the strength of the incident detonation wave. For an incident CJ detonation wave, the re-initiation of a detonation wave in the acceptor depends on the initial pressure in the donor and the expansion ratio. The axisymmetric and non-axisymmetric soot patterns respectively correspond to direct detonation and detonation re-initiation. For an incident overdriven detonation wave, the re-initiation of a detonation wave in the acceptor strongly depends on the degree of overdrive.

Numerical Investigation on detonation combustion waves of hydrogen-air mixture in pulse detonation combustor with blockage

  • Pinku Debnath;K.M. Pandey
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.203-222
    • /
    • 2023
  • The detonation combustion is a supersonic combustion process follows on shock wave oscillations in detonation tube. In this paper numerical studies are carried out combined effect of blockage ratio and spacing of obstacle on detonation wave propagation of hydrogen-air mixture in pulse detonation combustor. The deflagration to detonation transition of stoichiometric (ϕ=1)fuel-air mixture in channel has been analyzed for effect of blockage ratio (BR)=0.39, 0.51, 0.59, 0.71 with spacing of 2D and 3D. The reactive Navier-Stokes equation is used to solve the detonation wave propagation mechanism in Ansys Fluent platform. The result shows that fully developed detonation wave initiation regime is observed near smaller vortex generator ratio of BR=0.39 inside the combustor. The turbulent rate of reaction has also a great significance role for shock wave structure. However, vortices of rapid detonation wave are appears near thin boundary layer of each obstacle. Finally, detonation combustor demonstrates the superiority of pressure gain combustor with turbulent rate of reaction of 0.6 kg mol/m3 -s inside the detonation tube with obstacle spacing of 12 cm, this blockage enhanced the turbulence intensity and propulsive thrust. The successful detonation wave propagation speed is achieved in shortest possible time of 0.031s with a significance magnitude of 2349 m/s, which is higher than Chapman-Jouguet (C-J) velocity of 1848 m/s. Furthermore, stronger propulsive thrust force of 36.82 N is generated in pulse time of 0.031s.

Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle

  • Debnath, Pinku;Pandey, K.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.187-202
    • /
    • 2020
  • The exhaust nozzle serves back pressure of Pulse detonation combustor, so combustion chamber gets sufficient pressure for propulsion. In this context recent researches are focused on influence of nozzle effect on single cycle detonation wave propagation and propulsion performance of PDE. The effects of various nozzles like convergent-divergent nozzle, convergent nozzle, divergent nozzle and without nozzle at exit section of detonation tubes were computationally investigated to seek the desired propulsion performance. Further the effect of divergent nozzle length and half angle on detonation wave structure was analyzed. The simulations have been done using Ansys 14 Fluent platform. The LES turbulence model was used to simulate the combustion wave reacting flows in combustor with standard wall function. From these numerical simulations among four acquaint nozzles the highest thrust augmentation could be attained in divergent nozzle geometry and detonation wave propagation velocity eventually reaches to 1830 m/s, which is near about C-J velocity. Smaller the divergent nozzle half angle has a significant effect on faster detonation wave propagation.

Effect of Curvature on the Detonation Wave Propagation Characteristics in Annular Channels

  • Lee, Su-Han;Jo, Deok-Rae;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.531-535
    • /
    • 2008
  • Present study examines the detonation wave propagation characteristics in annular channel. A normalized value of channel width to the annular radius was considered as a geometric parameter. Numerical approaches used in the previous studies of detonation wave propagation were extended to the present study with OpenMP parallelization for multicore SMP machines. The major effect of the curved geometry on the detonation wave propagation seems to be a flow compression effect, regardless of the detonation regimes. The flow compression behind the detonation wave by the curved geometry of the circular channel pushes the detonation wave front and results in the overdriven detonation waves with increased detonation speed beyond the Chapmann-Jouguet speed. This effect gets stronger as the normalized radius smaller, as expected. The effect seems to be negligible beyond the normalized radius of 10.

  • PDF

Numerical Analysis of Detonation Wave Propagation in Annular Channel (환상 형 도관 내의 데토네이션 파 전파 특성 해석)

  • Lee, Su-Han;Cho, Deok-Rae;Choi, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.367-370
    • /
    • 2007
  • Present study examines detonation wave propagation characteristics in annular channel. A normalized value of channel width to the annular radius was considered as a geometric parameter. A parametric study was carried out for a various regimes of detonation waves from weakly unstable to highly unstable detonation waves. Numerical approaches that used in the previous study of numerical requirements of the simulation of detonation wave propagations in 2D and 3D channel were used also for the present study with OpenMP parallization for multi-core SMP machines. The major effect of the curved geometry on the detonation wave propagation seems to be a flow compression effect, regardless of the detonation regimes. The flow compression behind the detonation wave by the curved geometry of the circular channel pushes the detonation wave front and results in the overdriven detonation waves with increased detonation speed beyond the Chapmann-Jouguet speed. This effect gets stronger as the normalized radius smaller, as expected. The effect seems to be negligible beyond the normalized radius of 10.

  • PDF

Numerical Investigation on Initiation Process of Spherical Detonation by Direct Initiation with Various Ignition Energy

  • Nirasawa, Takayuki;Matsuo, Akiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.45-52
    • /
    • 2008
  • In order to investigate the initiation and propagation processes of a spherical detonation wave induced by direct initiation, numerical simulations were carried out using two-dimensional compressible Euler equations with an axisymmetric assumption and a one-step reaction model based on Arrhenius kinetics with various levels of ignition energy. By varying the amount of ignition energy, three typical initiation behaviors, which were subcritical, supercritical and critical regimes, were observed. Then, the ignition energy of more than $137.5{\times}10^6$ in non-dimensional value was required for initiating a spherical detonation wave, and the minimum ignition energy(i.e., critical energy) was less than that of the one-dimensional simulation reported by a previous numerical work. When the ignition energy was less than the critical energy, the blast wave generated from an ignition source continued to attenuate due to the separation of the blast wave and a reaction front. Therefore, detonation was not initiated in the subcrtical regime. When the ignition energy was more than the minimum initiation energy, the blast wave developed into a multiheaded detonation wave propagating spherically at CJ velocity, and then a cellular pattern radiated regularly out from the ignition center in the supercritical regime. The influence on ignition energy was observed in the cell width near the ignition center, but the cell width on the fully developed detonation remained constant during the expanding of detonation wave due to the consecutive formation of new triple points, regardless of ignition energy. When the ignition energy was equal to the critical energy, the decoupling of the blast wave and a reaction front appeared, as occurred in the subcrtical regime. After that, the detonation bubble induced by the local explosion behind the blast wave expanded and developed into the multiheaded detonation wave in the critical regime. Although few triple points were observed in the vicinity of the ignition core, the regularly located cellular pattern was generated after the onset of the multiheaded detonation. Then, the average cell width on the fully developed detonation was almost to that in the supercritical regime. These numerical results qualitatively agreed with previous experimental works regarding the initiation and propagation processes.

  • PDF

Three-Dimensional Numerical Analysis of Spinning Detonation Wave (Spinning Detonation 파의 3차원 수치 해석)

  • Cho, Deok-Rae;Choi, Jeong-Yeol;Won, Su-Hee
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.205-212
    • /
    • 2006
  • Three-dimensional numerical study was carried out for the investigation of the detonation wave structures propagating in tubes. Fluid dynamics equations and conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The variable gas properties between unburned and burned states were considered by using variable specific heat ratio formulation. The unsteady computational results in three-dimension show the detailed mechanisms of rectangular and diagonal mode of detonation wave instabilities resulting same cell length but different cell width in smoked-foil record. The results for the small reaction constant shows the spinning mode of three-dimensional detonation wave dynamics, which was rarely observed in the previous numerical simulation of the detonation waves.

  • PDF

Experimental Study on the Line Shock Wave in Explosive Welding (폭발용접에서 선형 충격파에 관한 실험적 연구)

  • 김청균;문정기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1108-1114
    • /
    • 1992
  • In this paper results from experimental studies on the line wave detonation of explosive welding were presented. Using the ultra high speed comera, the ling wave generation during the bonding, process of composite materials was observed with an equilateral triangle lens. Experimental results confirmed the line wave formation of the shock front. And the results indicated the effectiveness of the ling wave detonation method in the explosive welding of similar or dissimilar metals.

A Numerical Study on Normal and Abnormal Combustion in Hydrogen Premixture (수소 예혼합기의 정상 및 이상연소에 관한 수치해석)

  • 손채훈;정석호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1989-1998
    • /
    • 1995
  • Characteristics of the flame propagation for normal and abnormal combustion in hydrogen premixture in a cylindrical constant-volume combustion chamber are studied numerically. A detailed hydrogen oxidation kinetic mechanism, mixture transport properties and a model describing spark ignition process are used. The calculated pressure-time history of the stable deflagration wave propagation agrees well with the experiment. The ignition of the premixture in the unburned gas, initiated by the hot spot, causes a transition from deflagration to detonation under some initial temperature and pressure. Under the initial conditions with high temperature and pressure, excessive ignition energy initiates a strong blast wave and a detonation wave that follows. The chemical reaction in the detonation wave is much more vigorous than that in the deflagration wave and the peak pressure in the detonation wave is much higher than the equilibrium value.

Approximate Analysis Model and Detailed Unsteady Structure of Oblique Detonation Waves (경사 데토네이션파의 근사 해석 모델과 비정상 상세구조)

  • Choi Jeong-Yeol;Kim Don-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.136-140
    • /
    • 2005
  • By extending one-dimensional ZND detonation structure analysis model, a simple model for two-dimensional oblique detonation wave structure analysis is presented by coupling Rankine-Hugoniot relation and chemical kinetics for oblique shock wave and oblique detonation wave. Base on this study, two-dimensional fluid dynamics analysis is carried out to investigate the detailed unsteady structure of oblique detonation waves involving triple point, transverse waves and cellular structures. CFD results provide a deeper insight into the detailed structure of oblique detonation waves, and the simple model could be used as a unified design tool for hypersonic propulsion systems employing oblique detonation wave as combustion mechanism.

  • PDF