• Title/Summary/Keyword: Determination of dynamic position

Search Result 24, Processing Time 0.029 seconds

Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite (천리안위성 2A호 지구정지궤도위성 궤도결정)

  • Yongrae Kim;Sang-Cherl Lee;Jeongrae Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.

Dynamic Determination of IMM Mode Transition Probability for Multi-Radar Tracking (다중 레이더 추적을 위한 IMM 모드 천이 확률의 동적 결정)

  • Jeon, Dae-Keun;Eun, Yeon-Ju;Ko, Hyun;Yeom, Chan-Hong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • A method is presented of dynamic determination of mode transition probability for IMM in order to improve the accuracy performance of maneuvering target tracking for air traffic control surveillance processing system under multiple radar environment. It is shown that dynamic determination of mode transition probability based on the time intervals between the data input from multiple radars gives the optimized performance in terms of position estimation accuracy.

Improvement of Accuracy on Dynamic Position Determination Using Combined DGPS/IMU (DGPS/IMU 결합에 의한 동적위치결정의 정확도 향상)

  • Back, Ki-Suk;Park, Un-Yong;Hong, Soon-Heon
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.361-369
    • /
    • 2006
  • This study conducted an initialization test to decide dynamic position using AHRS IMU sensor, and derived attitude correction angles of vehicles against time through regression analysis. It was also found that the heading angle was stabilized with variation less than 1°after 60 seconds. Using these angles, this study carried out an experiment on the determination of dynamic position for each system in the open sky and in a semi-open sky. According to the results, in the open sky, DGPS alone systems were excellent in accuracy but poor in data acquisition, so the moving distance was around 12m. In DGPS/IMU combined system, accuracy and data acquisition were satisfactory and the moving distance was around 0.3m. In a semi-open sky, DGPS alone systems were excellent in accuracy in order of DGPS < FIMU < DGPS/IMU according to average and standard errors obtained with exclusion of places where data were not be obtained. The moving distance was the same as that in the open sky. For DGPS, when places where data were not obtainable were divided into Several block and they were compared, the maximum deviation from the trajectory was up to 41.5m in DGPS alone system, but it was less than 2.2m and average and standard errors were significantly improved in the combined system. When the navigation system was applied to surveys and the result was compared with position error 0.2mm under the guideline for digital map, it was possible to work on maps on a scale of up to 1 : 1,000.

  • PDF

GPS-Based Orbit Determination for KOMPSAT-5 Satellite

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Young-Rok;Roh, Kyoung-Min;Jung, Ok-Chul;Kim, Hae-Dong
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.487-496
    • /
    • 2011
  • Korea Multi-Purpose Satellite-5 (KOMPSAT-5) is the first satellite in Korea that provides 1 m resolution synthetic aperture radar (SAR) images. Precise orbit determination (POD) using a dual-frequency IGOR receiver data is performed to conduct high-resolution SAR images. We suggest orbit determination strategies based on a differential GPS technique. Double-differenced phase observations are sampled every 30 seconds. A dynamic model approach using an estimation of general empirical acceleration every 6 minutes through a batch least-squares estimator is applied. The orbit accuracy is validated using real data from GRACE and KOMPSAT-2 as well as simulated KOMPSAT-5 data. The POD results using GRACE satellite are adjusted through satellite laser ranging data and compared with publicly available reference orbit data. Operational orbit determination satisfies 5 m root sum square (RSS) in one sigma, and POD meets the orbit accuracy requirements of less than 20 cm and 0.003 cm/s RSS in position and velocity, respectively.

Adaptive control of flexible joint manipulators based on the singular perturbation theory (특이 섭동 이론에 의한 유연성 관절 매니퓰레이터의 적응제어)

  • 김응석;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.7-11
    • /
    • 1991
  • The adaptive control of flexible joint manipulator is the focus of this paper. The full order flexible joint manipulator dynamic system does not allow the determination of a feedback linearization control as for rigid manipulators. This drawback is overcome by a model order reduction based on a singular perturbation strategy. The full order flexible joint manipulator dynamic model is adopted for derivation of the adaptive control law to damp out the elastic oscillations at the joints. It is shown that the joint position error will converge to zero asymptotically and that other signals remain bounded without precise knowledge of parameters of the manipulator and its joint flexibility.

  • PDF

Speed Field orient control of permanent magnet linear motor according to determination of system rate. (직선형 영구 자석 동기 모터의 시스템 정격 선정에 따른 속도 제어 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Jang, Won-Bum;Yang, Moon-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1273-1275
    • /
    • 2005
  • This paper presents design of speed control system for slot less iron-cored PM linear synchronous motor using space vector PWM. the design must be considered by the useable limits of the DC link voltage and dynamic operating rage as well as the characteristics of design parameters in a point of system. Therefore, in this paper, the permissible operating range of manufactured motor by determination of rate speed and rate thrust according to switching scheme of DC link voltage are offered. The vector control requires information about rotor position. And we can need to the Hall sensor for sampling current. In order to agree with this purpose, Digital Signal Processor(TMS320F240x) developed for implementation of a speed Field Oriented Control.

  • PDF

Dynamic characteristics indentification of automobile exhaust system and determination of hanger optimal position (자동차 배기계의 동특성 규명 및 행거 최적위치의 결정)

  • 오재응;임동규;조준호;김만복
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.57-70
    • /
    • 1992
  • As automobile industry develope, design techniques to satisfy light weight and high efficiency in automobile parts is demanded. In this study modal analysis is performed using transfer matrix method to identify dynamic characteristics of exhaust system. It is estimated the theoretical transfer function by Pestel-Leckey method and the mode shapes in 3-D graphic. the validity of developed program is verified by comparing with the experimental results of exhaust system. Estimated modal parameters(natural frequency, vibrational mode, transfer function) are in accord with the experimental results. From the developed program, we can predict a location of the hanger which is determined by the lowest RMS value point, when displacement is given as an input at the engine side. We can find that attachment of spring modelled hanger at the hanger location bring vibration level down.

  • PDF

Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle) (무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템)

  • Oh Sang Heon;Lee Sang Jeong;Park Chansik;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.

Attitude Determination Technique using Ultrasound and RF Signal (초음파와 RF를 이용한 자세결정)

  • Kim, Seung-Beom;Kang, Dong-Youn;Yun, Hee-Hak;Lee, Geon-Woo;Lee, Sang-Jeong;Park, Chan-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.1025-1031
    • /
    • 2007
  • GPS is widely used for positioning applications and attitude of a vehicle can be found also with multiple antennas. However, extremely weak signal level prevents GPS from indoor operation. DR with accelerometers and gyros and landmark based localization method used for indoor applications increase complexity and cost. In this paper, a simple but very efficient ultrasound based attitude determination system which determines both position and attitude in WSN is given. The range between transmitter and receivers are measured using the arrival time difference between ultrasound and RF signal. The 3 dimensional positions can be found using more than 3 range measurements. Furthermore, if more than 2 transmitters are used, the attitude can be determined using the baseline vectors obtained by differencing transmitter and receiver positions. The prototype system is implemented to evaluate the performance of the proposed method. In addition, an error analysis shows the relation between the attitude error and basel me length, quality of measurement and orientation of a vehicle. The static and dynamic experiments performed by micro mobile robot shows accurate position with less than 1.5cm error and attitude with less than 1 degree error can be obtained continuously with 20cm baseline. It is expected that these results can be adapted without modification to indoor applications such as home cleaning robot and autonomous wheelchair maneuvering.

Deploy Position Determination for Accurate Parachute Landing of a UAV (무인기의 정밀 낙하산 착륙을 위한 전개지점 결정)

  • Kim, Inhan;Park, Sanghyuk;Park, Woosung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.465-472
    • /
    • 2013
  • In this paper, we suggest how to determine the parachute deploy position for accurate landing of a UAV at a desired position. The 9-DOF dynamic modeling of UAV-parachute system is required to construct the proposed algorithm based on neural network nonlinear function approximation technique. The input and output data sets to train the neural network are obtained from simulation results using UAV-parachute 9-DOF model. The input data consist of the deploy position, UAV's velocity, and wind velocity. The output data consist of the cross range and down range of landing positions. So we predict the relative landing position from the current UAV position. The deploy position is then determined through distance compensations for the relative landing positions from the desired landing position. The deploy position is consistently calculated and updated.