• 제목/요약/키워드: Determinant of elliptic operators

검색결과 1건 처리시간 0.014초

ZETA FUNCTIONS AND COEFFICIENTS OF AN ASYMPTOTIC EXPANSION OF logDet FOR ELLIPTIC OPERATORS WITH PARAMETER ON COMPACT MANIFOLDS

  • Lee, Yoonweon
    • Korean Journal of Mathematics
    • /
    • 제7권2호
    • /
    • pp.159-166
    • /
    • 1999
  • For classical elliptic pseudodifferential operators $A({\lambda})$ of order $m$ > 0 with parameter ${\lambda}$ of weight ${\chi}$ > 0, it is known that $logDet_{\theta}A({\lambda})$ admits an asymptotic expansion as ${\theta}{\rightarrow}+{\infty}$. In this paper we show, with some assumptions, that the coefficients of ${\lambda}^-{\frac{n}{\chi}}$ can be expressed by the values of zeta functions at 0 for some elliptic ${\psi}$DO's on $M{\times}S^1{\times}{\cdots}{\times}S^1$ multiplied by $\frac{m}{c_{n-1}}$.

  • PDF