• Title/Summary/Keyword: Detection parameter

Search Result 823, Processing Time 0.031 seconds

Damage assessment of linear structures by a static approach, I: Theory and formulation

  • Tseng, Shih-Shong
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.181-193
    • /
    • 2000
  • The objective of this research is to propose a new global damage detection parameter, termed as the static defect energy (SDE). This candidate parameter possesses the ability to detect, locate and quantify structural damage. To have a full understanding about this parameter and its applications, the scope of work can be divided into several tasks: theory and formulation, numerical simulation studies, experimental verification and feasibility studies. This paper only deals with the first part of the task. Brief introduction will be given to the dynamic defect energy (DDE) after systematically reviewing the previous works. Process of applying the perturbation method to the oscillatory system to obtain a static expression will be followed. Two implementation methods can be used to obtain SDE equations and the diagrams. Both results are equally good for damage detection.

A REVERSIBLE IMAGE AUTHENTICATION METHOD FREE FROM LOCATION MAP AND PARAMETER MEMORIZATION

  • Han, Seung-Wu;Fujiyoshi, Masaaki;Kiya, Hitoshi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.572-577
    • /
    • 2009
  • This paper proposes a novel reversible image authentication method that requires neither location map nor memorization of parameters. The proposed method detects image tampering and further localizes tampered regions. Though this method once distorts an image to hide data for tamper detection, it recovers the original image from the distorted image unless no tamper is applied to the image. The method extracts hidden data and recovers the original image without memorization of any location map that indicates hiding places and of any parameter used in the algorithm. This feature makes the proposed method practical. Simulation results show the effectiveness of the proposed method.

  • PDF

Speckle Noise Reduction and Flaw Detection of Ultrasonic Non-destructive Testing Based on Wavelet Domain AR Model (웨이브렛 평면 AR 모델을 이용한 초음파 비파괴 검사의 스펙클 잡음 감소 및 결함 검출)

  • 이영석;임래묵;김덕영;신동환;김성환
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.100-107
    • /
    • 1999
  • In this paper, we deal with the speckle noise reduction and parameter estimation of ultrasonic NDT(non-destructive test) signals obtained during weld inspection of piping. The overall approach consists of three major steps, namely, speckle noise analysis, proposition of wavelet domain AR(autoregressive) model and flaw detection by proposed model parameter. The data are first processed whereby signals obtained using vertical and angle beam transducer. Correlation properties of speckle noise are then analyzed using multiresolution analysis in wavelet domain. The parameter estimation curve obtained using the proposed model is classified a flaw in weld region where is contaminated by severe speckle noise and also clear flaw signal is obtained through CA-CFAR threshold estimator that is a nonlinear post-processing method for removing the noise from reconstructed ultrasonic signal.

  • PDF

Voice Activity Detection Using Global Speech Absence Probability Based on Teager Energy in Noisy Environments (잡음환경에서 Teager Energy 기반의 전역 음성부재확률을 이용하는 음성검출)

  • Park, Yun-Sik;Lee, Sang-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.97-103
    • /
    • 2012
  • In this paper, we propose a novel voice activity detection (VAD) algorithm to effectively distinguish speech from nonspeech in various noisy environments. Global speech absence probability (GSAP) derived from likelihood ratio (LR) based on the statistical model is widely used as the feature parameter for VAD. However, the feature parameter based on conventional GSAP is not sufficient to distinguish speech from noise at low SNRs (signal-to-noise ratios). The presented VAD algorithm utilizes GSAP based on Teager energy (TE) as the feature parameter to provide the improved performance of decision for speech segments in noisy environment. Performances of the proposed VAD algorithm are evaluated by objective test under various environments and better results compared with the conventional methods are obtained.

Vision Based Vehicle Detection and Traffic Parameter Extraction (비젼 기반 차량 검출 및 교통 파라미터 추출)

  • 하동문;이종민;김용득
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.610-620
    • /
    • 2003
  • Various shadows are one of main factors that cause errors in vision based vehicle detection. In this paper, two simple methods, land mark based method and BS & Edge method, are proposed for vehicle detection and shadow rejection. In the experiments, the accuracy of vehicle detection is higher than 96%, during which the shadows arisen from roadside buildings grew considerably. Based on these two methods, vehicle counting, tracking, classification, and speed estimation are achieved so that real-time traffic parameters concerning traffic flow can be extracted to describe the load of each lane.

An Adaptive Noise Detection and Modified Gaussian Noise Removal Using Local Statistics for Impulse Noise Image (국부 통계 특성을 이용한 임펄스 노이즈 영상의 적응적 노이즈 검출 및 변형된 형태의 Gaussian 노이즈 제거 기법)

  • Nguyen, Tuan-Anh;Song, Won-Seon;Hong, Min-Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.179-181
    • /
    • 2009
  • In this paper, we propose an adaptive noise detection and modified Gaussian removal algorithm using local statistics for impulse noise. In order to determine constraints for noise detection, the local mean, variance, and maximum values are used. In addition, a modified Gaussian filter that integrates the tuning parameter to remove the detected noises. Experimental results show that our method is significantly better than a number of existing techniques in terms of image restoration and noise detection.

  • PDF

Baggage Recognition in Occluded Environment using Boosting Technique

  • Khanam, Tahmina;Deb, Kaushik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5436-5458
    • /
    • 2017
  • Automatic Video Surveillance System (AVSS) has become important to computer vision researchers as crime has increased in the twenty-first century. As a new branch of AVSS, baggage detection has a wide area of security applications. Some of them are, detecting baggage in baggage restricted super shop, detecting unclaimed baggage in public space etc. However, in this paper, a detection & classification framework of baggage is proposed. Initially, background subtraction is performed instead of sliding window approach to speed up the system and HSI model is used to deal with different illumination conditions. Then, a model is introduced to overcome shadow effect. Then, occlusion of objects is detected using proposed mirroring algorithm to track individual objects. Extraction of rotational signal descriptor (SP-RSD-HOG) with support plane from Region of Interest (ROI) add rotation invariance nature in HOG. Finally, dynamic human body parameter setting approach enables the system to detect & classify single or multiple pieces of carried baggage even if some portions of human are absent. In baggage detection, a strong classifier is generated by boosting similarity measure based multi layer Support Vector Machine (SVM)s into HOG based SVM. This boosting technique has been used to deal with various texture patterns of baggage. Experimental results have discovered the system satisfactorily accurate and faster comparative to other alternatives.

A Parametric Voice Activity Detection Based on the SPD-TE for Nonstationary Noises (비정체성 잡음을 위한 SPD-TE 기반 계수형 음성 활동 탐지)

  • Koo, Boneung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.310-315
    • /
    • 2015
  • A single channel VAD (Voice Activity Detection) algorithm for nonstationary noise environment is proposed in this paper. Threshold values of the feature parameter for VAD decision are updated adaptively based on estimates of means and standard deviations of past non-speech frames. The feature parameter, SPD-TE (Spectral Power Difference-Teager Energy), is obtained by applying the Teager energy to the WPD (Wavelet Packet Decomposition) coefficients. It was reported previously that the SPD-TE is robust to noise as a feature for VAD. Experimental results by using TIMIT speech and NOISEX-92 noise databases show that decision accuracy of the proposed algorithm is comparable to several typical VAD algorithms including standards for SNR values ranging from 10 to -10 dB.

Pedestrian and Vehicle Distance Estimation Based on Hard Parameter Sharing (하드 파라미터 쉐어링 기반의 보행자 및 운송 수단 거리 추정)

  • Seo, Ji-Won;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.389-395
    • /
    • 2022
  • Because of improvement of deep learning techniques, deep learning using computer vision such as classification, detection and segmentation has also been used widely at many fields. Expecially, automatic driving is one of the major fields that applies computer vision systems. Also there are a lot of works and researches to combine multiple tasks in a single network. In this study, we propose the network that predicts the individual depth of pedestrians and vehicles. Proposed model is constructed based on YOLOv3 for object detection and Monodepth for depth estimation, and it process object detection and depth estimation consequently using encoder and decoder based on hard parameter sharing. We also used attention module to improve the accuracy of both object detection and depth estimation. Depth is predicted with monocular image, and is trained using self-supervised training method.

Fault Detection of BLDC Motor Using Serial Communication Based Parameter Estimation (시리얼 통신 기반 파라미터 추정에 의한 BLDC모터의 고장검출)

  • 서석훈;유정봉;우광준
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.45-52
    • /
    • 2002
  • This paper presents fault detection scheme of Brushless DC(BLDC) motor drive system by estimating BLDC motor resistance using motor input and output data which is transmitted from data acquisition board to host computer over serial communication channel. Since communication time delay has a serious effect on performance, we use periodic and fixed communication protocol. Hence, the delay time is priory known. Simplified BLDC motor model and recursive least square algorithm is used for estimating motor resistance. By experiment result, we confirm the proposed scheme.