Multi-temporal satellite imagery can be changed into a transform image that emphasizes the changed area only through the application of various change detection techniques. From the transform image, an automated change detection model calculates the optimal threshold value for classifying the changed and unchanged areas. However, the model can cause undesirable results when the histogram of the transform image is unbalanced. This is because the model uses a single threshold value in which the sign is either positive or negative and its value is constant (e.g. -1, 1), regardless of the imbalance between changed pixels. This paper proposes an advanced method that can improve accuracy by applying separate threshold values according to the increased or decreased range of the changed pixels. It applies multiple threshold values based on the cumulative producer's and user's accuracies in the automated binary change detection model, and the analyst can automatically extract more accurate optimal threshold values. Multi-temporal IKONOS satellite imagery for the Daejeon area was used to test the proposed method. A total of 16 transformation results were applied to the two study sites, and optimal threshold values were determined using accuracy assessment curves. The experiment showed that the accuracy of most transform images is improved by applying multiple threshold values. The proposed method is expected to be used in various study fields, such as detection of illegal urban building, detection of the damaged area in a disaster, etc.
The sensitivity-based finite element model updating method has received increasing attention in damage detection of structures based on measured modal parameters. Finding an optimization technique with high efficiency and fast convergence is one of the key issues for model updating-based damage detection. A new simple and computationally efficient optimization algorithm is proposed and applied to damage detection by using finite element model updating. The proposed method combines the Gauss-Newton method with region truncation of each iterative step, in which not only the constraints are introduced instead of penalty functions, but also the searching steps are restricted in a controlled region. The developed algorithm is illustrated by a numerically simulated 25-bar truss structure, and the results have been compared and verified with those obtained from the trust region method. In order to investigate the reliability of the proposed method in damage detection of structures, the influence of the uncertainties coming from measured modal parameters on the statistical characteristics of detection result is investigated by Monte-Carlo simulation, and the probability of damage detection is estimated using the probabilistic method.
Communications for Statistical Applications and Methods
/
v.18
no.4
/
pp.517-525
/
2011
This paper shows the performance evaluation of a robust estimator based on the GARCH model. We first introduce the method of a robust estimate in the GARCH model and the method of an outlier detection in the GARCH model. The results of the real internet traffic data show the out-performance of the robust estimator over the outlier detection method in the GARCH model. In addition, the method of the robust estimate is less complex than the method of the outlier detection method in the GARCH model.
International Journal of Control, Automation, and Systems
/
v.4
no.1
/
pp.70-76
/
2006
The objective of this paper is to propose a reference model of a fire detection and monitoring system using MS/TP protocol. The reference model is designed to satisfy the requirements of response time and flexibility. The reference model is operated on the basis of BACnet, a standard communication protocol for building automation systems. Validity of the reference model was examined using a simulation model. This study also evaluated the performance of the BACnet-based fire detection and monitoring system in terms of network-induced delay. Simulation results show that the reference model satisfies the requirements of the fire detection and monitoring system.
The Journal of the Korea institute of electronic communication sciences
/
v.11
no.6
/
pp.619-626
/
2016
Intrusion detection model detects a intrusion when intrusion behaviour occurred. The model analyzes a variety of intrusion pattern and supports a modeling method to represent for a intrusion pattern efficiently. Particularly, the model defines classes of intrusion pattern and supports modeling method that detects a network level intrusion through multiple hosts for multiple intrusions. In this paper, proposes a multiple intrusion detection model that support a verification method for intrusion detection systems and verifies a safeness of proposed model and compares with other models.
Journal of the Korea Institute of Military Science and Technology
/
v.23
no.2
/
pp.115-124
/
2020
Due to the increasing threats of submarines from North Korea and other countries, ROK Navy should improve the detection capability of submarines. There are two ways to detect submarines : acoustic detection and non-acoustic detection. Since the acoustic-detection way has limitations in spite of its usefulness, it should have the complementary way. The non-acoustic detection is the way to detect submarines which are operating mast sets such as periscopes and snorkels by non-acoustic sensors. So, this paper proposes a new submarine non-acoustic detection model using an ensemble of Convolutional Neural Network models in order to automate the non-acoustic detection. The proposed model is trained to classify targets as 4 classes which are submarines, flag buoys, lighted buoys, small boats. Based on the numerical study with 10,287 images, we confirm the proposed model can achieve 91.5 % test accuracy for the non-acoustic detection of submarines.
Journal of Institute of Control, Robotics and Systems
/
v.21
no.11
/
pp.989-995
/
2015
Due to the recent increase of the importance and demand of security services, the importance of a surveillance monitor system that makes an automatic security system possible is increasing. As the market for surveillance monitor systems is growing, price competitiveness is becoming important. As a result of this trend, surveillance monitor systems based on an embedded system are widely used. In this paper, an object detection algorithm based on an embedded system for a surveillance monitor system is introduced. To apply the object detection algorithm to the embedded system, the most important issue is the efficient use of resources, such as memory and processors. Therefore, designing an appropriate algorithm considering the limit of resources is required. The proposed algorithm uses two background models; therefore, the embedded system is designed to have two independent processors. One processor checks the sub-background models for if there are any changes with high update frequency, and another processor makes the main background model, which is used for object detection. In this way, a background model will be made with images that have no objects to detect and improve the object detection performance. The object detection algorithm utilizes one-dimensional histogram distribution, which makes the detection faster. The proposed object detection algorithm works fast and accurately even in a low-priced embedded system.
The traditional destructive tests in damage detection require high cost, long consuming time, repairing of damaged members, etc. In addition to these, powerful equipments with advanced technology have motivated development of global vibration based damage detection methods. These methods base on observation of the changes in the structural dynamic properties and updating finite element models. The existence, location, severity and effect on the structural behavior of the damages can be identified by using these methods. The main idea in these methods is to minimize the differences between analytical and experimental natural frequencies. In this study, an application of damage detection using model updating method was presented on a one storey reinforced concrete (RC) building model. The model was designed to be 1/2 scale of a real building. The measurements on the model were performed by using ten uni-axial seismic accelerometers which were placed to the floor level. The presented damage identification procedure mainly consists of five steps: initial finite element modeling, testing of the undamaged model, finite element model calibration, testing of the damaged model, and damage detection with model updating. The elasticity modulus was selected as variable parameter for model calibration, while the inertia moment of section was selected for model updating. The first three modes were taken into consideration. The possible damaged members were estimated by considering the change ratio in the inertia moment. It was concluded that the finite element model calibration was required for structures to later evaluations such as damage, fatigue, etc. The presented model updating based procedure was very effective and useful for RC structures in the damage identification.
Recently, most interchanges of information have been performed in the internet environments. So, the technuque, which is used as intrusion deleting tool for system protecting against attack, is very important. But, the skills of intrusion detection are newer and more delicate, we need preparations for defending from these attacks. Currently, lots of intrusion detection systemsmake the midel of intrusion detection rule using experienced data, based on this model they have the strategy of defence against attacks. This is not efficient for defense from new attack. In this paper, a new model of intrusion detection is proposed. This is hybrid statistical learning model using likelihood ratio test and statistical learning theory, then this model can detect a new attack as well as experienced attacks. This strategy performs intrusion detection according to make a model by finding abnomal attacks. Using KDD Cup-99 task data, we can know that the proposed model has a good result of intrusion detection.
Since 99% of PCs operating in the defense domain use the Windows operating system, detection and response of Window-based malware is very important to keep the defense cyberspace safe. This paper proposes a model capable of detecting malware in a Windows PE (Portable Executable) format. The detection model was designed with an emphasis on rapid update of the training model to efficiently cope with rapidly increasing malware rather than the detection accuracy. Therefore, in order to improve the training speed, the detection model was designed based on a Bidirectional LSTM (Long Short Term Memory) network that can detect malware with minimal sequence data without complicated pre-processing. The experiment was conducted using the EMBER2018 dataset, As a result of training the model with feature sets consisting of three type of sequence data(Byte-Entropy Histogram, Byte Histogram, and String Distribution), accuracy of 90.79% was achieved. Meanwhile, it was confirmed that the training time was shortened to 1/4 compared to the existing detection model, enabling rapid update of the detection model to respond to new types of malware on the surge.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.