• Title/Summary/Keyword: Detection model

Search Result 5,137, Processing Time 0.033 seconds

Application of Multiple Threshold Values for Accuracy Improvement of an Automated Binary Change Detection Model

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.271-285
    • /
    • 2009
  • Multi-temporal satellite imagery can be changed into a transform image that emphasizes the changed area only through the application of various change detection techniques. From the transform image, an automated change detection model calculates the optimal threshold value for classifying the changed and unchanged areas. However, the model can cause undesirable results when the histogram of the transform image is unbalanced. This is because the model uses a single threshold value in which the sign is either positive or negative and its value is constant (e.g. -1, 1), regardless of the imbalance between changed pixels. This paper proposes an advanced method that can improve accuracy by applying separate threshold values according to the increased or decreased range of the changed pixels. It applies multiple threshold values based on the cumulative producer's and user's accuracies in the automated binary change detection model, and the analyst can automatically extract more accurate optimal threshold values. Multi-temporal IKONOS satellite imagery for the Daejeon area was used to test the proposed method. A total of 16 transformation results were applied to the two study sites, and optimal threshold values were determined using accuracy assessment curves. The experiment showed that the accuracy of most transform images is improved by applying multiple threshold values. The proposed method is expected to be used in various study fields, such as detection of illegal urban building, detection of the damaged area in a disaster, etc.

Damage detection using finite element model updating with an improved optimization algorithm

  • Xu, Yalan;Qian, Yu;Song, Gangbing;Guo, Kongming
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.191-208
    • /
    • 2015
  • The sensitivity-based finite element model updating method has received increasing attention in damage detection of structures based on measured modal parameters. Finding an optimization technique with high efficiency and fast convergence is one of the key issues for model updating-based damage detection. A new simple and computationally efficient optimization algorithm is proposed and applied to damage detection by using finite element model updating. The proposed method combines the Gauss-Newton method with region truncation of each iterative step, in which not only the constraints are introduced instead of penalty functions, but also the searching steps are restricted in a controlled region. The developed algorithm is illustrated by a numerically simulated 25-bar truss structure, and the results have been compared and verified with those obtained from the trust region method. In order to investigate the reliability of the proposed method in damage detection of structures, the influence of the uncertainties coming from measured modal parameters on the statistical characteristics of detection result is investigated by Monte-Carlo simulation, and the probability of damage detection is estimated using the probabilistic method.

A Comparative Study of a Robust Estimate Method for Abnormal Traffic Detection (이상 트래픽 탐지를 위한 로버스트 추정 방법 비교 연구)

  • Jung, Jae-Yoon;Kim, Sahm
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.517-525
    • /
    • 2011
  • This paper shows the performance evaluation of a robust estimator based on the GARCH model. We first introduce the method of a robust estimate in the GARCH model and the method of an outlier detection in the GARCH model. The results of the real internet traffic data show the out-performance of the robust estimator over the outlier detection method in the GARCH model. In addition, the method of the robust estimate is less complex than the method of the outlier detection method in the GARCH model.

Performance Evaluation of a BACnet-based Fire Detection and Monitoring System for use in Buildings

  • Song Won-Seok;Hong Seung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.70-76
    • /
    • 2006
  • The objective of this paper is to propose a reference model of a fire detection and monitoring system using MS/TP protocol. The reference model is designed to satisfy the requirements of response time and flexibility. The reference model is operated on the basis of BACnet, a standard communication protocol for building automation systems. Validity of the reference model was examined using a simulation model. This study also evaluated the performance of the BACnet-based fire detection and monitoring system in terms of network-induced delay. Simulation results show that the reference model satisfies the requirements of the fire detection and monitoring system.

Design and Analysis of Multiple Intrusion Detection Model (다중 침입 탐지 모델의 설계와 분석)

  • Lee, Yo-Seob
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.619-626
    • /
    • 2016
  • Intrusion detection model detects a intrusion when intrusion behaviour occurred. The model analyzes a variety of intrusion pattern and supports a modeling method to represent for a intrusion pattern efficiently. Particularly, the model defines classes of intrusion pattern and supports modeling method that detects a network level intrusion through multiple hosts for multiple intrusions. In this paper, proposes a multiple intrusion detection model that support a verification method for intrusion detection systems and verifies a safeness of proposed model and compares with other models.

A Study on the Improvement of Submarine Detection Based on Mast Images Using An Ensemble Model of Convolutional Neural Networks (컨볼루션 신경망의 앙상블 모델을 활용한 마스트 영상 기반 잠수함 탐지율 향상에 관한 연구)

  • Jeong, Miae;Ma, Jungmok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • Due to the increasing threats of submarines from North Korea and other countries, ROK Navy should improve the detection capability of submarines. There are two ways to detect submarines : acoustic detection and non-acoustic detection. Since the acoustic-detection way has limitations in spite of its usefulness, it should have the complementary way. The non-acoustic detection is the way to detect submarines which are operating mast sets such as periscopes and snorkels by non-acoustic sensors. So, this paper proposes a new submarine non-acoustic detection model using an ensemble of Convolutional Neural Network models in order to automate the non-acoustic detection. The proposed model is trained to classify targets as 4 classes which are submarines, flag buoys, lighted buoys, small boats. Based on the numerical study with 10,287 images, we confirm the proposed model can achieve 91.5 % test accuracy for the non-acoustic detection of submarines.

Multiple-Background Model-Based Object Detection for Fixed-Embedded Surveillance System (고정형 임베디드 감시 카메라 시스템을 위한 다중 배경모델기반 객체검출)

  • Park, Su-In;Kim, Min Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.989-995
    • /
    • 2015
  • Due to the recent increase of the importance and demand of security services, the importance of a surveillance monitor system that makes an automatic security system possible is increasing. As the market for surveillance monitor systems is growing, price competitiveness is becoming important. As a result of this trend, surveillance monitor systems based on an embedded system are widely used. In this paper, an object detection algorithm based on an embedded system for a surveillance monitor system is introduced. To apply the object detection algorithm to the embedded system, the most important issue is the efficient use of resources, such as memory and processors. Therefore, designing an appropriate algorithm considering the limit of resources is required. The proposed algorithm uses two background models; therefore, the embedded system is designed to have two independent processors. One processor checks the sub-background models for if there are any changes with high update frequency, and another processor makes the main background model, which is used for object detection. In this way, a background model will be made with images that have no objects to detect and improve the object detection performance. The object detection algorithm utilizes one-dimensional histogram distribution, which makes the detection faster. The proposed object detection algorithm works fast and accurately even in a low-priced embedded system.

Vibration based damage detection in a scaled reinforced concrete building by FE model updating

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.73-90
    • /
    • 2014
  • The traditional destructive tests in damage detection require high cost, long consuming time, repairing of damaged members, etc. In addition to these, powerful equipments with advanced technology have motivated development of global vibration based damage detection methods. These methods base on observation of the changes in the structural dynamic properties and updating finite element models. The existence, location, severity and effect on the structural behavior of the damages can be identified by using these methods. The main idea in these methods is to minimize the differences between analytical and experimental natural frequencies. In this study, an application of damage detection using model updating method was presented on a one storey reinforced concrete (RC) building model. The model was designed to be 1/2 scale of a real building. The measurements on the model were performed by using ten uni-axial seismic accelerometers which were placed to the floor level. The presented damage identification procedure mainly consists of five steps: initial finite element modeling, testing of the undamaged model, finite element model calibration, testing of the damaged model, and damage detection with model updating. The elasticity modulus was selected as variable parameter for model calibration, while the inertia moment of section was selected for model updating. The first three modes were taken into consideration. The possible damaged members were estimated by considering the change ratio in the inertia moment. It was concluded that the finite element model calibration was required for structures to later evaluations such as damage, fatigue, etc. The presented model updating based procedure was very effective and useful for RC structures in the damage identification.

Hybrid Statistical Learning Model for Intrusion Detection of Networks (네트워크 침입 탐지를 위한 변형된 통계적 학습 모형)

  • Jun, Sung-Hae
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.705-710
    • /
    • 2003
  • Recently, most interchanges of information have been performed in the internet environments. So, the technuque, which is used as intrusion deleting tool for system protecting against attack, is very important. But, the skills of intrusion detection are newer and more delicate, we need preparations for defending from these attacks. Currently, lots of intrusion detection systemsmake the midel of intrusion detection rule using experienced data, based on this model they have the strategy of defence against attacks. This is not efficient for defense from new attack. In this paper, a new model of intrusion detection is proposed. This is hybrid statistical learning model using likelihood ratio test and statistical learning theory, then this model can detect a new attack as well as experienced attacks. This strategy performs intrusion detection according to make a model by finding abnomal attacks. Using KDD Cup-99 task data, we can know that the proposed model has a good result of intrusion detection.

Bidirectional LSTM based light-weighted malware detection model using Windows PE format binary data (윈도우 PE 포맷 바이너리 데이터를 활용한 Bidirectional LSTM 기반 경량 악성코드 탐지모델)

  • PARK, Kwang-Yun;LEE, Soo-Jin
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.87-93
    • /
    • 2022
  • Since 99% of PCs operating in the defense domain use the Windows operating system, detection and response of Window-based malware is very important to keep the defense cyberspace safe. This paper proposes a model capable of detecting malware in a Windows PE (Portable Executable) format. The detection model was designed with an emphasis on rapid update of the training model to efficiently cope with rapidly increasing malware rather than the detection accuracy. Therefore, in order to improve the training speed, the detection model was designed based on a Bidirectional LSTM (Long Short Term Memory) network that can detect malware with minimal sequence data without complicated pre-processing. The experiment was conducted using the EMBER2018 dataset, As a result of training the model with feature sets consisting of three type of sequence data(Byte-Entropy Histogram, Byte Histogram, and String Distribution), accuracy of 90.79% was achieved. Meanwhile, it was confirmed that the training time was shortened to 1/4 compared to the existing detection model, enabling rapid update of the detection model to respond to new types of malware on the surge.