• Title/Summary/Keyword: Detection loss

Search Result 938, Processing Time 0.024 seconds

Siamese Neural Networks to Overcome the Insufficient Data Problems in Product Defect Detection (제품 결함 탐지에서 데이터 부족 문제를 극복하기 위한 샴 신경망의 활용)

  • Shin, Kang-hyeon;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.108-111
    • /
    • 2022
  • Applying deep learning to machine vision systems for defect detection of products requires vast amounts of training data about various defect cases. However, since data imbalance occurs according to the type of defect in the actual manufacturing industry, it takes a lot of time to collect product images enough to generalize defect cases. In this paper, we apply a Siamese neural network that can be learned with even a small amount of data to product defect detection, and modify the image pairing method and contrastive loss function by properties the situation of product defect image data. We indirectly evaluated the embedding performance of Siamese neural networks using AUC-ROC, and it showed good performance when the images only paired among same products, not paired among defective products, and learned with exponential contrastive loss.

  • PDF

Study of the Fall Detection System Applying the Parameters Claculated from the 3-axis Acceleration Sensor to Long Short-term Memory (3축 가속 센서의 가공 파라미터를 장단기 메모리에 적용한 낙상감지 시스템 연구)

  • Jeong, Seung Su;Kim, Nam Ho;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.391-393
    • /
    • 2021
  • In this paper, we introduce a long short-term memory (LSTM)-based fall detection system using TensorFlow that can detect falls occurring in the elderly in daily living. 3-axis accelerometer data are aggregated for fall detection, and then three types of parameter are calculated. 4 types of activity of daily living (ADL) and 3 types of fall situation patterns are classified. The parameterized data applied to LSTM. Learning proceeds until the Loss value becomes 0.5 or less. The results are calculated for each parameter θ, SVM, and GSVM. The best result was GSVM, which showed Sensitivity 98.75%, Specificity 99.68%, and Accuracy 99.28%.

  • PDF

Efficient Detection of Space-Time Block Codes Based on Parallel Detection

  • Kim, Jeong-Chang;Cheun, Kyung-Whoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.100-107
    • /
    • 2011
  • Algorithms based on the QR decomposition of the equivalent space-time channel matrix have been proved useful in the detection of V-BLAST systems. Especially, the parallel detection (PD) algorithm offers ML approaching performance up to 4 transmit antennas with reasonable complexity. We show that when directly applied to STBCs, the PD algorithm may suffer a rather significant SNR degradation over ML detection, especially at high SNRs. However, simply extending the PD algorithm to allow p ${\geq}$ 2 candidate layers, i.e. p-PD, regains almost all the loss but only at a significant increase in complexity. Here, we propose a simplification to the p-PD algorithm specific to STBCs without a corresponding sacrifice in performance. The proposed algorithm results in significant complexity reductions for moderate to high order modulations.

Improvement of learning concrete crack detection model by weighted loss function

  • Sohn, Jung-Mo;Kim, Do-Soo;Hwang, Hye-Bin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.15-22
    • /
    • 2020
  • In this study, we propose an improvement method that can create U-Net model which detect fine concrete cracks by applying a weighted loss function. Because cracks in concrete are a factor that threatens safety, it is important to periodically check the condition and take prompt initial measures. However, currently, the visual inspection is mainly used in which the inspector directly inspects and evaluates with naked eyes. This has limitations not only in terms of accuracy, but also in terms of cost, time and safety. Accordingly, technologies using deep learning is being researched so that minute cracks generated in concrete structures can be detected quickly and accurately. As a result of attempting crack detection using U-Net in this study, it was confirmed that it could not detect minute cracks. Accordingly, as a result of verifying the performance of the model trained by applying the suggested weighted loss function, a highly reliable value (Accuracy) of 99% or higher and a harmonic average (F1_Score) of 89% to 92% was derived. The performance of the learning improvement plan was verified through the results of accurately and clearly detecting cracks.

A New Active RED Algorithm for Congestion Control in IP Networks (IP 네트워크에서 혼잡제어를 위한 새로운 Active RED 알고리즘)

  • Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.437-446
    • /
    • 2002
  • In order to reduce the increasing packet loss rates caused by an exponential increase in network traffic, the IETF (Internet Engineering Task Force) is considering the deployment of active queue management techniques such as RED (Random Early Detection). While active queue management in routers and gateways can potentially reduce packet loss rates in the Internet, this paper has demonstrated the inherent weakness of current techniques and shows that they are ineffective in preventing high loss rates. The inherent problem with these queue management algorithms is that they all use static parameter setting. So, in case where these parameters do not match the requirement of the network load, the performance of these algorithms can approach that of a traditional Drop-tail. In this paper, in order to solve this problem, a new active queue management algorithm called ARED (Active RED) is proposed. ARED computes the parameter based on our heuristic method. This algorithm can effectively reduce packet loss while maintaining high link utilizations.

Sensitivity Analysis and Optimization of Design Variables Related to an Algorithm for Loss of Balance Detection (균형상살 검출 알고리즘에서 검출과 관련된 설계변수의 민감도 해석 몇 최적화)

  • Ko, B.K.;Kim, K.H.;Son, K.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • This study suggested an optimized algorithm for detecting the loss of balance(LOB) in the seated position. And the sensitivity analysis was performed in order to identify the role of each design variable in the algorithm. The LOB algorithm consisted of data processing of measured signals, an internal model of the central nervous system and a control error anomaly(CEA) detector. This study optimized design variables of a CEA detector to obtain improved values of the success rate(SR) of detecting the LOB and the margin time(MT) provided for preventing the falling. Nine healthy adult volunteers were involved in the experiments. All the subjects were asked to balance their body in a predescribed seated posture with the rear legs of a four-legged wooden chair. The ground reaction force from the right leg was measured from the force plate while the accelerations of the chair and the head were measured from a couple of piezoelectric accelerometers. The measured data were processed to predict the LOB using a detection algorithm. Variables S2, h2 and hd are related to the detector: S2 represents a data selecting window, h2 a time shift and hd an operating period of the LOB detection algorithm. S2 was varied from 0.1 to 10 sec with an increment of 0.1 sec, and both h2 and hd were varied from 0.01 to 1.0 sec with an increment of 0.01 sec. It was found that the SR and MT were increased by up to 9.7% and 0.497 sec comparing with the previously published case when the values of S2, h2 and hd were set to 4.5, 0.3 and 0.2 sec, respectively. Also the results of sensitivity analysis showed that S2 and h2 had considerable influence on the SR while these variables were not so sensitive to the MT.

Modified Random Early Defection Algorithm for the Dynamic Congestion Control in Routers (라우터에서의 동적인 혼잡 제어를 위한 새로운 큐 관리 알고리즘)

  • Koo, Ja-Hon;Song, Byung-Hun;Chung, Kwang-Sue;Oh, Seoung-Jun
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.4
    • /
    • pp.517-526
    • /
    • 2001
  • In order to reduce the increasing packet loss rates caused by an exponential increase in network traffic, the IETF(Internet Engineering Task Force) is considering the deployment of active queue management techniques such as RED(Random Early Detection). While active queue management in routers and gateways can potentially reduce total packet loss rates in the Internet, this paper has demonstrated the inherent weakness of current techniques and shows that they are ineffective in preventing high loss rates. The inherent problem with these queue management algorithms is that they all use queue lengths as the indicator of the severity of congestion. In this paper, in order to solve this problem, a new active queue management algorithm called MRED(Modified Random Early Detection) is proposed. MRED computes the packet drop probability based on our heuristic method rather than the simple method used in RED. Using simulation, MRED is shown to perform better than existing queue management schemes. To analyze the performance, we also measure throughput of traffics under the FIFO control, and compared the performance with that of this MRED system.

  • PDF

A 1.485 Gbps Wireless Video Signal Transmission System at 240 GHz (240 GHz, 1.485 Gbps 비디오신호 무선 전송 시스템)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.105-113
    • /
    • 2010
  • In this paper, a 1.485 Gbps video signal transmission system using the carrier frequency of 240 GHz band was designed and simulated. The sub-harmonic mixer based on Schottky barrier diode was simulated in the transmitter and receiver. Both of heterodyne and direct detection receivers were simulated for each performance analysis. The ASK modulation was used in the transmitter and the envelop detection method was used in the receiver. The transmitter simulation results showed that the RF output power was -11.4 dBm($73{\mu}W$), when the IF input power was -3 dBm(0.5 mW) at the LO power of 7 dBm(5 mW) in sub-harmonic mixer, which corresponds to SSB(Single Side Band) conversion loss of 8.4 dB. This value is similar to the conversion loss of 8.0 dB(SSB) of VDI's commercial model WR3.4SHM(220~325 GHz) at 240 GHz. The combined transmitter and receiver simulation results showed that the recovered signal waveforms were in good agreement to the transmitted 1.485 Gbps NRZ signal.

Study of regularization of long short-term memory(LSTM) for fall detection system of the elderly (장단기 메모리를 이용한 노인 낙상감지시스템의 정규화에 대한 연구)

  • Jeong, Seung Su;Kim, Namg Ho;Yu, Yun Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1649-1654
    • /
    • 2021
  • In this paper, we introduce a regularization of long short-term memory (LSTM) based fall detection system using TensorFlow that can detect falls that can occur in the elderly. Fall detection uses data from a 3-axis acceleration sensor attached to the body of an elderly person and learns about a total of 7 behavior patterns, each of which is a pattern that occurs in daily life, and the remaining 3 are patterns for falls. During training, a normalization process is performed to effectively reduce the loss function, and the normalization performs a maximum-minimum normalization for data and a L2 regularization for the loss function. The optimal regularization conditions of LSTM using several falling parameters obtained from the 3-axis accelerometer is explained. When normalization and regularization rate λ for sum vector magnitude (SVM) are 127 and 0.00015, respectively, the best sensitivity, specificity, and accuracy are 98.4, 94.8, and 96.9%, respectively.

Reliable Measurement Selection for The Small Target Detection and Tracking in The IR Scanning Images (적외선 주사 영상에서 소형 표적의 탐지 및 추적을 위한 신뢰성 있는 측정치 선택 기법)

  • Yang, Yu-Kyung;Kim, Sung-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.75-84
    • /
    • 2008
  • A new automatic small target detection and tracking algorithm for the real-time IR surveillance system is presented. The automatic target detection and tracking algorithm of the real-time systems, requires low complexity and robust tracking performance in the cluttered environment. Linear-array and parallel-scan IR systems usually suffer from severe scan noise caused by the detector non-uniformity. After the spatial filtering and thresholding, this scan noise still remains as high amplitude clutter which degrades the target detection rate and tracking performance. In this paper, we propose a new feature which consists of area and validity information of a measurement. By adopting this feature to the measurements selection and track confirmation, we can increase the target detection rate and reduce both the track loss rate and false track rate. From the experimental results, we can validate the feasibility of the proposed method in the noisy IR images.