• 제목/요약/키워드: Detection and Tracking of Moving Objects

검색결과 105건 처리시간 0.027초

코호넨 네트워크 및 시간 지연 신경망을 이용한 움직이는 물체의 중심점 탐지 및 동작특성 분석에 관한 연구 (A Study on Center Detection and Motion Analysis of a Moving Object by Using Kohonen Networks and Time Delay Neural Networks)

  • 황정구;김종영;장태정
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.91-98
    • /
    • 2001
  • In this paper, center detection and motion analysis of a moving object are studied. Kohonen's self-organizing neural network models are used for the moving objects tracking and time delay neural networks are used for dynamic characteristic analysis. Instead of objects brightness, neuron projections by Kohonen Networks are used. The motion of target objects can be analyzed by using the differential neuron image between the two projections. The differential neuron image which is made by two consecutive neuron projections is used for center detection and moving objects tracking. The two differential neuron images which are made by three consecutive neuron projections are used for the moving trajectory estimation. It is possible to distinguish 8 directions of a moving trajectory with two frames and 16 directions with three frames.

  • PDF

감시 비디오를 위한 H.264/SVC 비트스트림 영역에서의 그래프 기반 움직임 객체 검출 및 추적 (Graph-based Moving Object Detection and Tracking in an H.264/SVC bitstream domain for Video Surveillance)

  • 호와리;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 하계학술대회
    • /
    • pp.298-301
    • /
    • 2012
  • This paper presents a graph-based method of detecting and tracking moving objects in H.264/SVC bitstreams for video surveillance applications that makes use the information from spatial base and enhancement layers of the bitstreams. In the base layer, segmentation of real moving objects are first performed using a spatio-temporal graph by removing false detected objects via graph pruning and graph projection, followed by graph matching to precisely identify the real moving objects over time even under occlusion. For the accurate detection and reliable tracking of moving objects in the enhancement layer, as well as saving computational complexity, the identified block groups of the real moving objects in the base layer are then mapped to the enhancement layer to provide accurate and efficient object detection and tracking in the bitstreams of higher resolution. Experimental results show the proposed method can produce reliable results with low computational complexity in both spatial layers of H.264/SVC test bitstreams.

  • PDF

MCMC 방법을 이용한 자율주행 차량의 보행자 탐지 및 추적방법 (Pedestrian Detection and Tracking Method for Autonomous Navigation Vehicle using Markov chain Monte Carlo Algorithm)

  • 황중원;김남훈;윤정연;김창환
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.113-119
    • /
    • 2012
  • In this paper we propose the method that detects moving objects in autonomous navigation vehicle using LRF sensor data. Object detection and tracking methods are widely used in research area like safe-driving, safe-navigation of the autonomous vehicle. The proposed method consists of three steps: data segmentation, mobility classification and object tracking. In order to make the raw LRF sensor data to be useful, Occupancy grid is generated and the raw data is segmented according to its appearance. For classifying whether the object is moving or static, trajectory patterns are analysed. As the last step, Markov chain Monte Carlo (MCMC) method is used for tracking the object. Experimental results indicate that the proposed method can accurately detect moving objects.

DSP 기반의 실시간 이동물체 검출 및 추적 (Real-time Detection and Tracking of Moving Objects Based on DSP)

  • 아욱재;김양수;이상락;최한고
    • 융합신호처리학회논문지
    • /
    • 제11권4호
    • /
    • pp.263-269
    • /
    • 2010
  • 본 연구는 무인 영상감시를 위한 이동물체의 실시간 탐지 및 추적을 다루고 있다. 고정 카메라로부터 획득한 영상을 사용하여 영상 내의 모든 이동물체를 검출하고 이동물체를 에워싸는 사각형 박스로 물체를 표시하여 추적한다. 추적방법은 TI DSK6455 키트와 키트 상에 연결된 FPGA 보드로 구성되는 임베디드 시스템에 구현하였다. DSP 키트에서는 이동물체의 검출과 추적을 위한 영상처리 알고리즘을 처리하며, 영상획득과 표시를 위해 설계된 FPGA 보드에서는 라인별로 영상을 읽고 DMA 데이터 전송 방식으로 DSP 프로세서로 영상 데이터를 보내며 또한 처리된 영상 데이터를 VGA 모니터로 보낸다. 실험결과에 의하면 이동물체의 추적은 만족스럽게 추적속도는 $320{\times}240$ 영상 해상도에서 초당 30 프레임의 속도로 수행하였다.

Image Processed Tracking System of Multiple Moving Objects Based on Kalman Filter

  • Kim, Sang-Bong;Kim, Dong-Kyu;Kim, Hak-Kyeong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.427-435
    • /
    • 2002
  • This paper presents a development result for image processed tracking system of multiple moving objects based on Kalman filter and a simple window tracking method. The proposed algorithm of foreground detection and background adaptation (FDBA) is composed of three modules: a block checking module(BCM), an object movement prediction module(OMPM), and an adaptive background estimation module (ABEM). The BCM is processed for checking the existence of objects. To speed up the image processing time and to precisely track multiple objects under the object's mergence, a concept of a simple window tracking method is adopted in the OMPM. The ABEM separates the foreground from the background in the reset simple tracking window in the OMPM. It is shown through experimental results that the proposed FDBA algorithm is robustly adaptable to the background variation in a short processing time. Furthermore, it is shown that the proposed method can solve the problems of mergence, cross and split that are brought up in the case of tracking multiple moving objects.

A Study on Center Detection and Motion Analysis of a Moving Object by Using Kohonen Networks and Time Delay Neural Networks

  • Kim, Jong-Young;Hwang, Jung-Ku;Jang, Tae-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.63.5-63
    • /
    • 2001
  • In this paper, moving objects tracking and dynamic characteristic analysis are studied. Kohonen´s self-organizing neural network models are used for moving objects tracking and time delay neural networks are used for dynamic characteristic analysis. Instead of objects brightness, neuron projections by Kohonen Networks are used. The motion of target objects can be analyzed by using the differential neuron image between the two projections. The differential neuron image which is made by two consecutive neuron projections is used for center detection and moving objects tracking. The two differential neuron images which are made by three consecutive neuron projections are used for the moving trajectory estimation.

  • PDF

이동물체들의 Optical flow와 EMD 알고리즘을 이용한 식별과 Kalman 필터를 이용한 추적 (Detection using Optical Flow and EMD Algorithm and Tracking using Kalman Filter of Moving Objects)

  • 이정식;주영훈
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1047-1055
    • /
    • 2015
  • We proposes a method for improving the identification and tracking of the moving objects in intelligent video surveillance system. The proposed method consists of 3 parts: object detection, object recognition, and object tracking. First of all, we use a GMM(Gaussian Mixture Model) to eliminate the background, and extract the moving object. Next, we propose a labeling technique forrecognition of the moving object. and the method for identifying the recognized object by using the optical flow and EMD algorithm. Lastly, we proposes method to track the location of the identified moving object regions by using location information of moving objects and Kalman filter. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

골격 특징 및 색상 유사도를 이용한 가축 도난 감지 시스템 (Livestock Theft Detection System Using Skeleton Feature and Color Similarity)

  • 김준형;주영훈
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.586-594
    • /
    • 2018
  • In this paper, we propose a livestock theft detection system through moving object classification and tracking method. To do this, first, we extract moving objects using GMM(Gaussian Mixture Model) and RGB background modeling method. Second, it utilizes a morphology technique to remove shadows and noise, and recognizes moving objects through labeling. Third, the recognized moving objects are classified into human and livestock using skeletal features and color similarity judgment. Fourth, for the classified moving objects, CAM (Continuously Adaptive Meanshift) Shift and Kalman Filter are used to perform tracking and overlapping judgment, and risk is judged to generate a notification. Finally, several experiments demonstrate the feasibility and applicability of the proposed method.

Specified Object Tracking Problem in an Environment of Multiple Moving Objects

  • Park, Seung-Min;Park, Jun-Heong;Kim, Hyung-Bok;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권2호
    • /
    • pp.118-123
    • /
    • 2011
  • Video based object tracking normally deals with non-stationary image streams that change over time. Robust and real time moving object tracking is considered to be a problematic issue in computer vision. Multiple object tracking has many practical applications in scene analysis for automated surveillance. In this paper, we introduce a specified object tracking based particle filter used in an environment of multiple moving objects. A differential image region based tracking method for the detection of multiple moving objects is used. In order to ensure accurate object detection in an unconstrained environment, a background image update method is used. In addition, there exist problems in tracking a particular object through a video sequence, which cannot rely only on image processing techniques. For this, a probabilistic framework is used. Our proposed particle filter has been proved to be robust in dealing with nonlinear and non-Gaussian problems. The particle filter provides a robust object tracking framework under ambiguity conditions and greatly improves the estimation accuracy for complicated tracking problems.