• Title/Summary/Keyword: Detection accuracy

Search Result 4,048, Processing Time 0.028 seconds

Performance Comparison of Scaffold Defect Detection Model by Parameters (파라미터에 따른 인공지지체 불량 탐지 모델의 성능 비교)

  • Song Yeon Lee;Yong Jeong Huh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.54-58
    • /
    • 2023
  • In this study, we compared the detection accuracy of the parameters of the scaffold failure detection model. A detection algorithm based on convolutional neural network was used to construct a failure detection model for scaffold. The parameter properties of the model were changed and the results were quantitatively verified. The detection accuracy of the model for each parameter was compared and the parameter with the highest accuracy was identified. We found that the activation function has a significant impact on the detection accuracy, which is 98% for softmax.

  • PDF

Encoding and language detection of text document using Deep learning algorithm (딥러닝 알고리즘을 이용한 문서의 인코딩 및 언어 판별)

  • Kim, Seonbeom;Bae, Junwoo;Park, Heejin
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.5
    • /
    • pp.124-130
    • /
    • 2017
  • Character encoding is the method used to represent characters or symbols on a computer, and there are many encoding detection software tools. For the widely used encoding detection software"uchardet", the accuracy of encoding detection of unmodified normal text document is 91.39%, but the accuracy of language detection is only 32.09%. Also, if a text document is encrypted by substitution, the accuracy of encoding detection is 3.55% and the accuracy of language detection is 0.06%. Therefore, in this paper, we propose encoding and language detection of text document using the deep learning algorithm called LSTM(Long Short-Term Memory). The results of LSTM are better than encoding detection software"uchardet". The accuracy of encoding detection of normal text document using the LSTM is 99.89% and the accuracy of language detection is 99.92%. Also, if a text document is encrypted by substitution, the accuracy of encoding detection is 99.26%, the accuracy of language detection is 99.77%.

A Target Detection Algorithm based on Single Shot Detector (Single Shot Detector 기반 타깃 검출 알고리즘)

  • Feng, Yuanlin;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.358-361
    • /
    • 2021
  • In order to improve the accuracy of small target detection more effectively, this paper proposes an improved single shot detector (SSD) target detection and recognition method based on cspdarknet53, which introduces lightweight ECA attention mechanism and Feature Pyramid Network (FPN). First, the original SSD backbone network is replaced with cspdarknet53 to enhance the learning ability of the network. Then, a lightweight ECA attention mechanism is added to the basic convolution block to optimize the network. Finally, FPN is used to gradually fuse the multi-scale feature maps used for detection in the SSD from the deep to the shallow layers of the network to improve the positioning accuracy and classification accuracy of the network. Experiments show that the proposed target detection algorithm has better detection accuracy, and it improves the detection accuracy especially for small targets.

A Study on Detection Performance Comparison of Bone Plates Using Parallel Convolution Neural Networks (병렬형 합성곱 신경망을 이용한 골절합용 판의 탐지 성능 비교에 관한 연구)

  • Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.63-68
    • /
    • 2022
  • In this study, we produced defect detection models using parallel convolution neural networks. If convolution neural networks are constructed parallel type, the model's detection accuracy will increase and detection time will decrease. We produced parallel-type defect detection models using 4 types of convolutional algorithms. The performance of models was evaluated using evaluation indicators. The model's performance is detection accuracy and detection time. We compared the performance of each parallel model. The detection accuracy of the model using AlexNet is 97 % and the detection time is 0.3 seconds. We confirmed that when AlexNet algorithm is constructed parallel type, the model has the highest performance.

Defect Detection of Steel Wire Rope in Coal Mine Based on Improved YOLOv5 Deep Learning

  • Xiaolei Wang;Zhe Kan
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.745-755
    • /
    • 2023
  • The wire rope is an indispensable production machinery in coal mines. It is the main force-bearing equipment of the underground traction system. Accurate detection of wire rope defects and positions exerts an exceedingly crucial role in safe production. The existing defect detection solutions exhibit some deficiencies pertaining to the flexibility, accuracy and real-time performance of wire rope defect detection. To solve the aforementioned problems, this study utilizes the camera to sample the wire rope before the well entry, and proposes an object based on YOLOv5. The surface small-defect detection model realizes the accurate detection of small defects outside the wire rope. The transfer learning method is also introduced to enhance the model accuracy of small sample training. Herein, the enhanced YOLOv5 algorithm effectively enhances the accuracy of target detection and solves the defect detection problem of wire rope utilized in mine, and somewhat avoids accidents occasioned by wire rope damage. After a large number of experiments, it is revealed that in the task of wire rope defect detection, the average correctness rate and the average accuracy rate of the model are significantly enhanced with those before the modification, and that the detection speed can be maintained at a real-time level.

Neural Network-based FMCW Radar System for Detecting a Drone (소형 무인 항공기 탐지를 위한 인공 신경망 기반 FMCW 레이다 시스템)

  • Jang, Myeongjae;Kim, Soontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.289-296
    • /
    • 2018
  • Drone detection in FMCW radar system needs complex techniques because a drone beat frequency is highly dynamic and unpredictable. Therefore, the current static signal processing algorithms cannot show appropriate detection accuracy. With dynamic signal fluctuation and environmental clutters, it can fail to detect a drone or make false detection. It affects to the radar system integrity and safety. Constant false alarm rate (CFAR), one of famous static signal process algorithm is effective for static environment. But for drone detection, it shows low detection accuracy. In this paper, we suggest neural network based FMCW radar system for detecting a drone. We use recurrent neural network (RNN) because it is the effective neural network for signal processing. In our FMCW radar system, one transmitter emits FMCW signal and four-way fixed receivers detect reflected drone beat frequency. The coordinate of the drone can be calculated with four receivers information by triangulation. Therefore, RNN only learns and inferences reflected drone beat frequency. It helps higher learning and detection accuracy. With several drone flight experiments, RNN shows false detection rate and detection accuracy as 21.1% and 96.4%, respectively.

Improvement of Vocal Detection Accuracy Using Convolutional Neural Networks

  • You, Shingchern D.;Liu, Chien-Hung;Lin, Jia-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.729-748
    • /
    • 2021
  • Vocal detection is one of the fundamental steps in musical information retrieval. Typically, the detection process consists of feature extraction and classification steps. Recently, neural networks are shown to outperform traditional classifiers. In this paper, we report our study on how to improve detection accuracy further by carefully choosing the parameters of the deep network model. Through experiments, we conclude that a feature-classifier model is still better than an end-to-end model. The recommended model uses a spectrogram as the input plane and the classifier is an 18-layer convolutional neural network (CNN). With this arrangement, when compared with existing literature, the proposed model improves the accuracy from 91.8% to 94.1% in Jamendo dataset. As the dataset has an accuracy of more than 90%, the improvement of 2.3% is difficult and valuable. If even higher accuracy is required, the ensemble learning may be used. The recommend setting is a majority vote with seven proposed models. Doing so, the accuracy increases by about 1.1% in Jamendo dataset.

A Study on Endpoint Detection and Syllable Segmentation System Using Ramp Edge Detection (Ramp Edge Detection을 이용한 끝점 검출과 음절 분할에 관한 연구)

  • 유일수;홍광석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2216-2219
    • /
    • 2003
  • Accurate speech region detection and automatic syllable segmentation is important part of speech recognition system. In automatic speech recognition system, they are needed for the purpose of accurate recognition and less computational complexity, In this paper, we Propose improved syllable segmentation method using ramp edge detection method and residual signal Peak energy. These methods were used to ensure accuracy and robustness for endpoint detection and syllable segmentation system. They have almost invariant response to various background noise levels. As experimental results, we obtained the rate of 90.7% accuracy in syllable segmentation in a condition of accurate endpoint detection environments.

  • PDF

Oil Spill Detection from RADARSAT-2 SAR Image Using Non-Local Means Filter

  • Kim, Daeseong;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.61-67
    • /
    • 2017
  • The detection of oil spills using radar image has been studied extensively. However, most of the proposed techniques have been focused on improving detection accuracy through the advancement of algorithms. In this study, research has been conducted to improve the accuracy of oil spill detection by improving the quality of radar images, which are used as input data to detect oil spills. Thresholding algorithms were used to measure the image improvement both before and after processing. The overall accuracy increased by approximately 16%, the producer accuracy increased by 40%, and the user accuracy increased by 1.5%. The kappa coefficient also increased significantly, from 0.48 to 0.92.

Accuracy Improvement of Pig Detection using Image Processing and Deep Learning Techniques on an Embedded Board (임베디드 보드에서 영상 처리 및 딥러닝 기법을 혼용한 돼지 탐지 정확도 개선)

  • Yu, Seunghyun;Son, Seungwook;Ahn, Hanse;Lee, Sejun;Baek, Hwapyeong;Chung, Yongwha;Park, Daihee
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.4
    • /
    • pp.583-599
    • /
    • 2022
  • Although the object detection accuracy with a single image has been significantly improved with the advance of deep learning techniques, the detection accuracy for pig monitoring is challenged by occlusion problems due to a complex structure of a pig room such as food facility. These detection difficulties with a single image can be mitigated by using a video data. In this research, we propose a method in pig detection for video monitoring environment with a static camera. That is, by using both image processing and deep learning techniques, we can recognize a complex structure of a pig room and this information of the pig room can be utilized for improving the detection accuracy of pigs in the monitored pig room. Furthermore, we reduce the execution time overhead by applying a pruning technique for real-time video monitoring on an embedded board. Based on the experiment results with a video data set obtained from a commercial pig farm, we confirmed that the pigs could be detected more accurately in real-time, even on an embedded board.