• 제목/요약/키워드: Detection Rate/Time

Search Result 1,284, Processing Time 0.031 seconds

Quality indicators in colonoscopy: the chasm between ideal and reality

  • Su Bee Park;Jae Myung Cha
    • Clinical Endoscopy
    • /
    • v.55 no.3
    • /
    • pp.332-338
    • /
    • 2022
  • Continuous measurement of quality indicators (QIs) should be a routine part of colonoscopy, as a wide variation still exists in the performance and quality levels of colonoscopy in Korea. Among the many QIs of colonoscopy, the adenoma detection rate, average withdrawal time, bowel preparation adequacy, and cecal intubation rate should be monitored in daily clinical practice to improve the quality of the procedure. The adenoma detection rate is the best indicator of the quality of colonoscopy; however, it has many limitations for universal use in daily practice. With the development of natural language processing, the adenoma detection rate is expected to become more effective and useful. It is important that colonoscopists do not strictly and mechanically maintain an average withdrawal time of 6 minutes but instead perform careful colonoscopy to maximally expose the colonic mucosa with a withdrawal time of at least 6 minutes. To achieve adequate bowel preparation, documentation of bowel preparation with the Boston Bowel Preparation Scale (BBPS) should be a routine part of colonoscopy. When colonoscopists routinely followed the bowel preparation protocols, ≥85% of outpatient screening colonoscopies had a BBPS score of ≥6. In addition, the cecal intubation rate should be ≥95% of all screening colonoscopies. The first step in improving colonoscopy quality in Korea is to apply these key performance measurements in clinical practice.

Dwell Time Optimization of Alert-Confirm Detection for Active Phased Array Radars

  • Kim, Eun Hee;Park, JoonYong
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.2
    • /
    • pp.107-114
    • /
    • 2019
  • Alert-confirm detection is a highly efficient method to improve phased array radar search performance. It comprises sequential detection in two steps: alert detection, in which a target is detected at a low detection threshold, and confirm detection, which is triggered by alert detection with a longer dwell time to minimize false alarms. This paper provides a design method for applying the alert-confirm detection to multifunctional radars. We find optimum dwell times and false alarm probabilities for each alert detection and confirm detection under the dual constraints of total false alarm probability and maximum allowable dwell time per position. These optimum values are expressed as a function of the mean new target appearance rate. The proposed alert-confirm detection increases the maximum detection range even with a shorter frame time than that of uniform scanning.

An Attack-based Filtering Scheme for Slow Rate Denial-of-Service Attack Detection in Cloud Environment

  • Gutierrez, Janitza Nicole Punto;Lee, Kilhung
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.125-136
    • /
    • 2020
  • Nowadays, cloud computing is becoming more popular among companies. However, the characteristics of cloud computing such as a virtualized environment, constantly changing, possible to modify easily and multi-tenancy with a distributed nature, it is difficult to perform attack detection with traditional tools. This work proposes a solution which aims to collect traffic packets data by using Flume and filter them with Spark Streaming so it is possible to only consider suspicious data related to HTTP Slow Rate Denial-of-Service attacks and reduce the data that will be stored in Hadoop Distributed File System for analysis with the FP-Growth algorithm. With the proposed system, we also aim to address the difficulties in attack detection in cloud environment, facilitating the data collection, reducing detection time and enabling an almost real-time attack detection.

Intrusion Detection: Supervised Machine Learning

  • Fares, Ahmed H.;Sharawy, Mohamed I.;Zayed, Hala H.
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.305-313
    • /
    • 2011
  • Due to the expansion of high-speed Internet access, the need for secure and reliable networks has become more critical. The sophistication of network attacks, as well as their severity, has also increased recently. As such, more and more organizations are becoming vulnerable to attack. The aim of this research is to classify network attacks using neural networks (NN), which leads to a higher detection rate and a lower false alarm rate in a shorter time. This paper focuses on two classification types: a single class (normal, or attack), and a multi class (normal, DoS, PRB, R2L, U2R), where the category of attack is also detected by the NN. Extensive analysis is conducted in order to assess the translation of symbolic data, partitioning of the training data and the complexity of the architecture. This paper investigates two engines; the first engine is the back-propagation neural network intrusion detection system (BPNNIDS) and the second engine is the radial basis function neural network intrusion detection system (BPNNIDS). The two engines proposed in this paper are tested against traditional and other machine learning algorithms using a common dataset: the DARPA 98 KDD99 benchmark dataset from International Knowledge Discovery and Data Mining Tools. BPNNIDS shows a superior response compared to the other techniques reported in literature especially in terms of response time, detection rate and false positive rate.

퍼지이론을 이용한 유고감지 알고리즘

  • 이시복
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.12a
    • /
    • pp.77-107
    • /
    • 1995
  • This paper documents the development of a fuzzy logic based incident detection model for urban diamond interchanges. Research in incident detection for intersections and arterials is at a very initial stage. Existing algorithms are still far from being robust in dealing with the difficulties related with data availability and the multi-dimensional nature of the incident detection problem. The purpose of this study is to develop a new real-time incident detection model for urban diamond interchanges. The development of the algorithm is based on fuzzy logic. The incident detection model developed through this research is capable of detecting lane¬blocking incidents when their effects are manifested by certain patterns of deterioration in traffic conditions and, thereby, adjustments in signal control strategies are required. The model overcomes the boundary condition problem inherent in conventional threshold-based concepts. The model captures system-wide incident effects utilizing multiple measures for more accurate and reliable detection, and serves as a component module of a real-time traffic adaptive diamond interchange control system. The model is designed to be readily scalable and expandable for larger systems of arterial streets. The prototype incident detection model was applied to an actual diamond interchange to investigate its performance. A simulation study was performed to evaluate the model's performance in terms of detection rate, false alarm rate, and mean time to detect. The model's performance was encouraging, and the fuzzy logic based approach to incident detection is promising.

  • PDF

A Highly Reliable Fall Detection System for The Elderly in Real-Time Environment (실시간 환경에서 노인들을 위한 고신뢰도 낙상 검출 시스템)

  • Lee, Young-Sook;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.401-406
    • /
    • 2008
  • Fall event detection is one of the most common problems for elderly people, especially those living alone because falls result in serious injuries such as joint dislocations, fractures, severe head injuries or even death. In order to prevent falls or fall-related injuries, several previous methods based on video sensor showed low fall detection rates in recent years. To improve this problem and outperform the system performance, this paper presented a novel approach for fall event detection in the elderly using a subtraction between successive difference images and temporal templates in real time environment. The proposed algorithm obtained the successful detection rate of 96.43% and the low false positive rate of 3.125% even though the low-quality video sequences are obtained by a USB PC camera sensor. The experimental results have shown very promising performance in terms of high detection rate and low false positive rate.

Hierarchical Authentication Algorithm Using Curvature Based Fiducial Point Extraction of ECG Signals (곡률기반 기준점 검출을 이용한 계층적 심전도 신호 개인인증 알고리즘)

  • Kim, Jungjoon;Lee, SeungMin;Ryu, Gang-Soo;Lee, Jong-Hak;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.3
    • /
    • pp.465-473
    • /
    • 2017
  • Electrocardiogram(ECG) signal is one of the unique bio-signals of individuals and is used for personal authentication. The existing studies on personal authentication method using ECG signals show a high detection rate for a small group of candidates, but a low detection rate and increased execution time for a large group of candidates. In this paper, we propose a hierarchical algorithm that extracts fiducial points based on curvature of ECG signals as feature values for grouping candidates ​and identifies candidates using waveform-based comparisons. As a result of experiments on 74 ECG signal records of QT-DB provided by Physionet, the detection rate was about 97% at 3-heartbeat input and about 99% at 5-heartbeat input. The average execution time was 22.4 milliseconds. In conclusion, the proposed method improves the detection rate by the hierarchical personal authentication process, and also shows reduced amount of computation which is plausible in real-time personal authentication usage in the future.

A Real Time Scan Detection System against Attacks based on Port Scanning Techniques (포트 스캐닝 기법 기반의 공격을 탐지하기 위한 실시간 스캔 탐지 시스템 구현)

  • 송중석;권용진
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.2
    • /
    • pp.171-178
    • /
    • 2004
  • Port scanning detection systems should rather satisfy a certain level of the requirement for system performance like a low rate of “False Positive” and “False Negative”, and requirement for convenience for users to be easy to manage the system security with detection systems. However, public domain Real Time Scan Detection Systems have high rate of false detection and have difficulty in detecting various scanning techniques. In addition, as current real time scan detection systems are based on command interface, the systems are poor at user interface and thus it is difficult to apply them to the system security management. Hence, we propose TkRTSD(Tcl/Tk Real Time Scan Detection System) that is able to detect various scan attacks based on port scanning techniques by applying a set of new filter rules, and minimize the rate of False Positive by applying proposed ABP-Rules derived from attacker's behavioral patterns. Also a GUI environment for TkRTSD is implemented by using Tcl/Tk for user's convenience of managing network security.

A New MPEG-2 Rate Control Scheme Using Scene Change Detection

  • Park, Sang-Gyu;Lee, Young-Sun;Chang, Hyun-Sik
    • ETRI Journal
    • /
    • v.18 no.2
    • /
    • pp.61-74
    • /
    • 1996
  • We propose two new rate control schemes to improve MPEG-2 rate control in view of visual quality when scene changes happen. Two proposed schemes are characterized by real-time and non real-time improvement to reduce the impact of scene changes. We also propose a new target-bit prediction method using spatial activity of pictures and present a simple and efficient scene change detection scheme using signed difference of mean absolute difference (MAD). Computer simulation results show that the proposed real-time algorithm effectively alleviates visual quality degradation after scene changes. The proposed non real-time algorithm gives maximum 2 dB improvement in peak signal-to-noise ratio (PSNR) at a scene-changed picture, compared with MPEG-2 rate control scheme and it shows better quality than the real-time one.

  • PDF

An Aggregate Detection Method for Improved Sensitivity using Correlation of Heterogeneous Intrusion Detection Sensors (이종의 침입탐지센서 관련성을 이용한 통합탐지의 민감도 향상 방법)

  • 김용민;김민수;김홍근;노봉남
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.4
    • /
    • pp.29-39
    • /
    • 2002
  • In general, the intrusion detection method of anomalous behaviors has high false alarm rate which contains false-positive and false-negative. To increase the sensitivity of intrusion detection, we propose a method of aggregate detection to reduce false alarm rate by using correlation between misuse activity detection sensors and anomalous ones. For each normal behavior and anomalous one, we produce the reflection rate between the result from one sensor and another in off-line. Then, we apply this rate to the result of real-time detection to reduce false alarm rate.