• 제목/요약/키워드: Detection Pressure

검색결과 662건 처리시간 0.035초

전력용 변압기 초음파 측정시스템 적용 (Application of the Ultrasonic Detection System for the Power Transformer)

  • 권동진;구교선;김재철
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권12호
    • /
    • pp.553-557
    • /
    • 2005
  • This paper describes the application results of an ultrasonic detection system for the power transformer. The ultrasonic detection system with 6 sensors was applied to detect partial discharge in a 154kV transformer with a dangerous levels of $C_{2}H_{2},\;C_{2}H_4$ and $CH_{4}$ gases. The ultrasonic detection tests were carried out 2 times, respectively, to confirm the existence and location of the partial discharge in the transformer. As a result of internal inspection, the arc trace between the pressure ring and core due to the partial discharge was found at the estimated position based on the amplitude and arriving time of the ultrasonic signals. Therefore, it was verified that the ultrasonic detection system is effective as a preventive diagnosis method for the power transformer. Also, the reliability of the ultrasonic detection system in detecting partial discharges in the transformer was also confirmed. It is expected, therefore, that the ultrasonic detection system will have beneficial effects on applications and verifications in detecting partial discharges for the power transformer.

합성 윤활유 및 고압 작동유 누출감지 필름형 센서의 구현 (Implementation of Film Type Sensor for Synthetic Lube Oil and High Pressure Hydraulic Fluid Leak Detection)

  • 박노진;유동근;유홍근
    • 센서학회지
    • /
    • 제23권4호
    • /
    • pp.266-271
    • /
    • 2014
  • Chemical sensors are used in various industrial facilities such high-risk and prevent the leakage of substances, important in life and environmental protection and the safe use of industry, used for management. In particular, high-temperature environments such as power generation equipment of the rotating part due to leakage generated by the various oil, power plants Shut Down, fire, work environment (exposure to various chemical solution and gas leak) and various water, air and soil pollution causes. Thus, over the long term through various channels such as crops and groundwater contamination caused by the slow, serious adverse effect on the ecosystem. In this paper, synthetic lube oil and high pressure hydraulic fluid leakage and immediately detect a new Printed Electronic implementation of technology-based film-type sensors, and its performance test. Thus, industrial accidents and environmental pollution and for early detection of problems, large accidents can be prevented. Experimental results of the synthetic lube oil and high pressure hydraulic fluid solution after the contact time depending on the experiment and the oil solution of the sensor material of the conductive porous PE resistance value by a chemical reaction could be confirmed that rapid increase. Also implemented in the film-type oil sensor electrical resistance change over time of the reaction rate and the synthetic lube oil is about 2 minutes or less, the high pressure hydraulic fluid is less than about 1 minute was. Therefore, more high-pressure hydraulic fluid such as a low volatility synthetic lube oils are the resistance change and the reaction rate was confirmed to be the slowest.

정적연소실에서 메탄-공기 예혼합화염의 CO, $CO_2$ 및 NOx 배출 특성 (CO, $CO_2$ and NOx Emission Characteristics of Methane-Air Premixed Flame in Constant Volume Combustion Chamber)

  • 김태권;김성훈;장준영
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.19-26
    • /
    • 2000
  • This paper presents the effects of initial pressure of mixture on CO, $CO_2$ and NOx emissions in constant volume combustion chamber. The CO, $CO_2,O_2,N_2$ concentrations in the chamber are determined by thermal conductivity detection (Gas-chromatograph) wile the NOx concentration is measured by chemiluminescent detection (NOx Analyser). Methane-air mixture is used as premixed fuel and the measurements are taken with equivalence ratios($\phi$) varing from 0.6 to 1.3, and initial pressures of methane-air mixture varing from 0.1MPa to 0.8MPa in constant volume combustion chamber. The NOx concentration steadily increases with increasing equivalence ratio, peaks in lean flame ($\phi$=0.85~0.9), and then rapidly decreases. However, as the initial pressure of mixture is increased, the equivalence ratio corresponding to the point of peak [NOx] shifts towards leaner conditions. This is caused by a similar shift in the peak [CH], which is caused by the variation with pressure and equivalence ratio of the rate of CH production from $CH_2$ and OH. The maximum combustion pressure peaks at $\phi$ =1.05 and the $CO_2$ concentration peaks at $\phi$=0.95~1.0 while the CO concentration rises sharply at the condition of fuel-rich mixtures. This is caused by complete combustion at $\phi$=0.95.

  • PDF

PAUT-based defect detection method for submarine pressure hulls

  • Jung, Min-jae;Park, Byeong-cheol;Bae, Jeong-hoon;Shin, Sung-chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.153-169
    • /
    • 2018
  • A submarine has a pressure hull that can withstand high hydraulic pressure and therefore, requires the use of highly advanced shipbuilding technology. When producing a pressure hull, periodic inspection, repair, and maintenance are conducted to maintain its soundness. Of the maintenance methods, Non-Destructive Testing (NDT) is the most effective, because it does not damage the target but sustains its original form and function while inspecting internal and external defects. The NDT process to detect defects in the welded parts of the submarine is applied through Magnetic particle Testing (MT) to detect surface defects and Ultrasonic Testing (UT) and Radiography Testing (RT) to detect internal defects. In comparison with RT, UT encounters difficulties in distinguishing the types of defects, can yield different results depending on the skills of the inspector, and stores no inspection record. At the same time, the use of RT gives rise to issues related to worker safety due to radiation exposure. RT is also difficult to apply from the perspectives of the manufacturing of the submarine and economic feasibility. Therefore, in this study, the Phased Array Ultrasonic Testing (PAUT) method was applied to propose an inspection method that can address the above disadvantages by designing a probe to enhance the precision of detection of hull defects and the reliability of calculations of defect size.

크랭크축 각속도의 변동을 이용한 실화 판정(1) (Misfire Detection by Using the Crankshaft Speed Fluctuation(1))

  • 배상수;임병진;김세웅;김응서
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.23-31
    • /
    • 1996
  • The crankshaft speed fluctuation was measured every crank angle. In order to detect the misfire, the engine and the dynamometer were considered as a single- degree of freedom system. From this modeling, the detection criteria were derived and examined by the engine test. By this method the single misfire or multiple misfires can be detected. Even on the condition of low load and higher speed than 3000rpm, where it was difficult through the other methods, misfire detection was carried out steadily. From this results, the method proposed by this paper proved reasonable.

  • PDF

플라즈마 식각공정에서의 EPD(End Point Detection) 제어기에 관한 연구 (A study on EPD(End Point Detection) controller on plasma teaching process)

  • 최순혁;차상엽;이종민;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.415-418
    • /
    • 1996
  • Etching Process, one of the most important process in semiconductor fabrication, has input control part of which components are pressure, gas flow, RF power and etc., and plasma gas which is complex and not exactly understood is used to etch wafer in etching chamber. So this process has not real-time feedback controller based on input-output relation, then it uses EPD(End Point Detection) signal to determine when to start or when to stop etching. Various type EPD controller control etching process using EPD signal obtained from optical intensity of etching chamber. In development EPD controller we concentrate on compensation of this signal intensity and setting the relative signal magnitude at first of etching. We compensate signal intensity using neural network learning method and set the relative signal magnitude using fuzzy inference method. Potential of this method which improves EPD system capability is proved by experiences.

  • PDF

THE NEW GENERATION OF THE BMW CHILD SEAT AND OCCUPANT DETECTION SYSTEM SBE 2

  • Lu, Yan;Marschner, Christian;Eisenmann, Lutz;Sauer, Sivart
    • International Journal of Automotive Technology
    • /
    • 제3권2호
    • /
    • pp.53-56
    • /
    • 2002
  • A new generation of the BMW child seat and occupant detection system SBE2 far a smart airbag system is described. The SBE2 system consists of two subsystems: OC (Occupant Classification) and FDS (Field Detection System). The OC system is a force sensitive sensor array that measures a pressure profile. The FDS system detects child seat and occupant according to the change of electrical field generated by four capacitive plates. Combining the signals from both subsystems, the BMW SBE2 system can distinguish fully automatically between a child seat and a person.

오실로메트릭 측정법을 사용한 심박주기 검출 성능 개선 (Enhancement of Heart Rate Detection using Oscillometric Method)

  • 김동준
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권1호
    • /
    • pp.50-54
    • /
    • 2014
  • 본 연구에서는 혈압측정으로부터 얻어지는 오실레이션(Oscillation) 신호를 이용하여 심박주기를 검출하고, 심박주기의 정확성을 개선하는 알고리듬을 개발하였다. 이를 위한 혈압측정의 방법으로 오실로메트릭(Oscillometric) 측정법을 사용하였으며, 오실레이션 신호의 피크들로부터 전 후 기울기들의 평균이 교차하는 지점을 실제 피크로 인정하고 심박주기를 계산하였다. 제안된 방법은 그래프 상에서 심박주기의 극심한 편차와 오류를 줄이는 성능을 나타냈다.

엔트로피 이론과 유전자 알고리즘을 결합한 상수관망의 최적 압력 계측위치 결정 (Determination of Optimal Pressure Monitoring Locations of Water Distribution Systems Using Entropy Theory and Genetic Algorithm)

  • 장동일;하금률;전환돈;강기훈
    • 상하수도학회지
    • /
    • 제26권1호
    • /
    • pp.1-12
    • /
    • 2012
  • The purpose of water distribution system is supplying water to users by maintaining appropriate pressure and water quality. For efficient monitoring of the water distribution system, determination of optimal locations for pressure monitoring is essential. In this study, entropy theory was applied to determine the optimal locations for pressure monitoring. The entropy which is defined as the amount of information was calculated from the pressure change due to the variation of demand reflected the abnormal conditions at nodes, and the emitter function (fire hydrant) was used to reproduce actual pressure change pattern in EPANET. The optimal combination of monitoring points for pressure detection was determined by selecting the nodes receiving maximum information from other nodes using genetic algorithm. The Ozger's and a real network were evaluated using the proposed model. From the results, it was found that the entropy theory can provide general guideline to select the locations of pressure sensors installation for optimal design and monitoring of the water distribution systems. During decision-making phase, optimal combination of monitoring points can be selected by comparing total amount of information at each point especially when there are some constraints of installation such as limitation of available budget.