• Title/Summary/Keyword: Detecting of Solar Panel Defects

Search Result 1, Processing Time 0.017 seconds

Development of a System for Predicting Photovoltaic Power Generation and Detecting Defects Using Machine Learning (기계학습을 이용한 태양광 발전량 예측 및 결함 검출 시스템 개발)

  • Lee, Seungmin;Lee, Woo Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.353-360
    • /
    • 2016
  • Recently, solar photovoltaic(PV) power generation which generates electrical power from solar panels composed of multiple solar cells, showed the most prominent growth in the renewable energy sector worldwide. However, in spite of increased demand and need for a photovoltaic power generation, it is difficult to early detect defects of solar panels and equipments due to wide and irregular distribution of power generation. In this paper, we choose an optimal machine learning algorithm for estimating the generation amount of solar power by considering several panel information and climate information and develop a defect detection system by using the chosen algorithm generation. Also we apply the algorithm to a domestic solar photovoltaic power plant as a case study.