본 연구에서는 콘크리트 구조물의 주요 손상인 균열에 대한 효과적인 점검을 위하여 이미지 처리 기법을 이용한 균열 검출이 가능한 균열 모니터링 자동화 시스템 개발의 일환으로 머신비전을 이용하여 균열 촬영 장비를 제작하고 균열 이미지 촬영 및 분석이 가능한 프로그램을 개발하였다. 본 시스템은 기존의 육안으로 균열을 점검하는 외관조사를 대체하여 객관적이고 정량적인 데이터를 제공한다. 개발 시스템의 검증은 자기치유 콘크리트 수조 시공 현장에 적용하여 균열 검출 및 재령에 따른 균열폭의 변화량을 모니터링하였다. 이미지 분석을 통해 검출된 균열폭의 경우 디지털 현미경을 이용한 실측값과 차이가 최대 0.036 mm로 나타났으며, 자기치유 콘크리트의 재령 경과에 따른 균열 치유 효과를 균열폭 감소를 통해 확인할 수 있었다.
음향방출 기법은 작동중인 상태에서 기계 설비를 비파괴 검사할 수 있는 기법이며, 균열성장 같은 장애의 신뢰성 있는 감시를 위해서 순간적인 균열신호뿐만 아니라 동특성을 이용하는 것이 중요하다. 균열성장을 검출하기 위해 널리 사용되는 물리적 파괴 3단계는 음향방출 현상이 시간에 따라 서로 겹치는 문제점이 있어 정확한 균열성장 시간을 추정하기 어렵다. 제안한 패턴인식 기법은 오경보와 미탐지를 최소화하기 위해서 음향방출 동특성을 입력으로 사용하고, 균열성장 시간을 정확히 추정하기 위해 시간에 따른 클러스터링 기법을 사용한다. 실험결과는 제안한 패턴인식 기법이 압력의 변화에 의한 음향방출의 변화의 강인함 때문에 실용화에 효율적임을 보여준다.
본 논문에서는 스케일링을 이용한 다중 스케일 균열 검출 방법을 제안한다. 제안하는 방법은 형태학 알고리즘, 균열 특징, 스케일링을 기반으로 한다. 사용하는 형태학 연산자는 균열의 패턴을 추출한다. 열림과 닫힘의 연산을 이용하여 균열과 배경을 구분한다. 형태학을 기반으로 하는 분할은 작은 간격의 균열을 검출하는 기존의 차분 이용 통합 방법 보다 좋은 성능을 보인다. 그러나, 형태학 방법들은 오직 하나의 구조 연산자를 사용하면 고정된 크기의 균열만을 검출할 수 있다. 따라서 스케일링 방법을 사용한다. 스케일링에 이중선형 보간법을 사용한다. 제안하는 방법은 분할된 영역의 화소 수와 최대 길이와 같은 특징들의 값들을 계산한다. 구분된 영역이 균열에 해당하는 지를 계산한 특징들의 값들에 의하여 결정한다. 실험 결과에서 제안한 다중 스케일 균열 검출 방법이 기존의 검출 방법들보다 향상된 결과를 보인다.
The purpose of this study is to compare the models of Deep Learning-based Convolution Neural Network(CNN) for concrete crack detection. The comparison models are AlexNet, GoogLeNet, VGG16, VGG19, ResNet-18, ResNet-50, ResNet-101, and SqueezeNet which won ImageNet Large Scale Visual Recognition Challenge(ILSVRC). To train, validate and test these models, we constructed 3000 training data and 12000 validation data with 256×256 pixel resolution consisting of cracked and non-cracked images, and constructed 5 test data with 4160×3120 pixel resolution consisting of concrete images with crack. In order to increase the efficiency of the training, transfer learning was performed by taking the weight from the pre-trained network supported by MATLAB. From the trained network, the validation data is classified into crack image and non-crack image, yielding True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), and 6 performance indicators, False Negative Rate (FNR), False Positive Rate (FPR), Error Rate, Recall, Precision, Accuracy were calculated. The test image was scanned twice with a sliding window of 256×256 pixel resolution to classify the cracks, resulting in a crack map. From the comparison of the performance indicators and the crack map, it was concluded that VGG16 and VGG19 were the most suitable for detecting concrete cracks.
아스팔트 포장의 균열은 날씨의 변화나 차량에 의한 충격으로 발생하며, 균열을 방치할 경우 포장 수명이 단축되고 각종 사고를 불러 일으킬 수 있다. 따라서 아스팔트 도로 포장의 균열을 빠르게 감지하여 보수조치를 취하기 위하여 이미지를 통해 균열을 자동으로 탐지하기 위한 연구들이 지속되어 왔다. 특히 최근들어 Convolutional Neural Network를 사용하여 아스팔트 도로 포장의 균열을 탐지하려는 모델들이 많이 연구되고 있으나, 고성능의 컴퓨팅 파워를 요구하기 때문에 실제 활용에는 한계가 있다. 이에 본 논문에서는 모바일 기기에 적용 가능한 스몰 딥러닝 모델을 적용하여 아스팔트 도로 포장의 균열을 탐지하는 모델의 개발을 위한 프레임워크를 제안한다. 사례연구를 통해 제안한 스몰 딥러닝 모델은 일반적인 딥러닝 모델들과 비교 연구되었으며, 상대적으로 적은 파라미터를 가지는 모델임에도 일반적인 딥러닝 모델들과 유사한 성능을 보였다. 개발된 모델은 모바일 기기나 IoT에 임베디드 되어 사용될 수 있을 것으로 기대된다.
Previous researches show that linearly integrated Hall sensor arrays (LIHaS) can detect cracks in the steel structure fast and effectively This paper proposes an algorithm that estimates the size and shape of cracks for the developed LIHaS. In most nondestructive testing (NDT), just crack existence and location are obtained by processing 1-dimensional data from the sensor that scans the object with relative speed in single direction. The proposed method is composed with two steps. The first step is constructing 2-dimensionally mapped data space by combining the converted position data from the time-based scan data with the position information of sensor arrays those are placed in the vertical direction to the scan direction. The second step is applying designed Laplacian filter and smoothing filter to estimate the size and shape of cracks. The experimental results of express train wheels show that the proposed algorithm is not only more reliable and accurate to detecting cracks but also effective to estimate the size and shape of cracks.
Acoustic Emission (AE) technique was applied to stress corrosion cracking of Inconel 600 to investigate the AE capability of detecting crack growth and to obtain the relation between AE characteristics and crack mechanism. The specimens were heat-treated in two conditions (600$^{\circ}C$ for 30 hrs or 700 $^{\circ}C$ for 1 hr) and undergone CERT at two extension rates ( 2.5${\times}$10$^{-5}$ or 1.25${\times}$10$^{-4}$(mm/s)). It was found that the AE peak amplitude from plastic deformation was generally smaller than about 48dB (0.25mV), while Intergranular stress corrosion cracking (IGSCC) and ductile fracture produced higher values of 49 to 70dB (0.3mV to 3mV). The slopes of cumulative amplitude distribution (b-values) were linearly dependent on IGSCC susceptibility and the higher the susceptibility, the smaller the b-value. The monitoring of combined AE parameters such as event rate, amplitude, count and energy can provide effective means to clearly identify the transition from crack initiation and small crack growth to rapid growth of dominant cracks.
Bolt degradation has become a major issue in the nuclear industry since the 1980's due to failure during operation. If small cracks in stud bolt are not detected early enough, they grow rapidly and cause catastrophic disasters. Their detection, despite its importance, is known to be a very difficult problem due to the complicated structures of the stud bolts. This paper presents a method of detecting and sizing a small crack in the root between two adjacent crests in threads. The key idea is from the fact that the Rayleigh wave propagates slowly along a crack from the tip to the opening and is reflected from the opening mouth. When there exists a crack, a small delayed pulse due to the Rayleigh wave is detected between large regularly spaced pulses from the thread. The delay time is the same as the propagation delay time of the slow Rayleigh wave and is proportional to the size of the crack. To efficiently detect the slow Rayleigh wave, three methods based on digital signal processing are proposed : modified wave shaping, dynamic predictive deconvolution, and dynamic predictive deconvolution combined with wave shaping.
Nondestructive evaluation (NDE) is an important task of civil engineering structure monitoring and inspection, but minor damage such as small cracks in local structure is difficult to observe. If cracks continued expansion may cause partial or even overall damage to the structure. Therefore, monitoring and detecting the structure in the early stage of crack propagation is important. The crack detection technology based on machine vision has been widely studied, but there are still some problems such as bad recognition effect for small cracks. In this paper, we proposed a deep learning method based on sweep signals to evaluate concrete surface crack with a width less than 1 mm. Two convolutional neural networks (CNNs) are used to analyze the one-dimensional (1D) frequency sweep signal and the two-dimensional (2D) time-frequency image, respectively, and the probability value of average damage (ADPV) is proposed to evaluate the minor damage of structural. Finally, we use the standard deviation of energy ratio change (ERVSD) and infrared thermography (IRT) to compare with ADPV to verify the effectiveness of the method proposed in this paper. The experiment results show that the method proposed in this paper can effectively predict whether the concrete surface is damaged and the severity of damage.
In this study, the harmless crack size was evaluated using carburized, quenched-tempered SCM822H steel. The possibility of detecting cracks that reduce the fatigue limit by non-destructive inspection was evaluated. The conclusions obtained are as follows. The retained austenite of surface was reduced by SP. About 35% and 65% of the retained austenite on the surface were transformed into strain-induced martensite, increasing the hardness by 79HV and 122HV over the as-received material. The maximum compressive residual stresses introduced on the surfaces were -695 MPa and -688 MPa, respectively. The fatigue limit increased by 1.48 times and 1.67 times, respectively, compared to the as-received material. The harmless crack size of SP specimen was determined differently depending on the shot ball size.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.