• Title/Summary/Keyword: Detecting abnormal sounds

Search Result 3, Processing Time 0.017 seconds

Proposal of a new method for learning of diesel generator sounds and detecting abnormal sounds using an unsupervised deep learning algorithm

  • Hweon-Ki Jo;Song-Hyun Kim;Chang-Lak Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.506-515
    • /
    • 2023
  • This study is to find a method to learn engine sound after the start-up of a diesel generator installed in nuclear power plant with an unsupervised deep learning algorithm (CNN autoencoder) and a new method to predict the failure of a diesel generator using it. In order to learn the sound of a diesel generator with a deep learning algorithm, sound data recorded before and after the start-up of two diesel generators was used. The sound data of 20 min and 2 h were cut into 7 s, and the split sound was converted into a spectrogram image. 1200 and 7200 spectrogram images were created from sound data of 20 min and 2 h, respectively. Using two different deep learning algorithms (CNN autoencoder and binary classification), it was investigated whether the diesel generator post-start sounds were learned as normal. It was possible to accurately determine the post-start sounds as normal and the pre-start sounds as abnormal. It was also confirmed that the deep learning algorithm could detect the virtual abnormal sounds created by mixing the unusual sounds with the post-start sounds. This study showed that the unsupervised anomaly detection algorithm has a good accuracy increased about 3% with comparing to the binary classification algorithm.

Heart Valve Stenosis Region Detection Algorithm on Heart Sounds (심음에서의 심장판막협착 영역 검출 알고리듬)

  • Lee, G.H.;Lee, Y.J.;Kim, M.N.
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1330-1340
    • /
    • 2012
  • In this paper, a new algorithm is proposed for the heart valves stenosis region detection using heart sounds. Many researches for detecting primary components or removing heart murmurs have been studied, but their performances are degraded at abnormal heart sounds such as aortic stenosis and mitral stenosis because of large heart murmurs. In this paper, heart murmur detection method is proposed based on noise intensity function. The proposed noise intensity function detect the primary components S1, S2, then set session up using S1, S2. And then noise intensity function was computed using autocorrelation value of each session. The proposed noise intensity function estimated noise intensity of each sessions and detected heart murmurs. According to simulation results, the proposed algorithm has better performance than former study for detecting heart valve stenosis region.

Sound recognition and tracking system design using robust sound extraction section (주변 배경음에 강인한 구간 검출을 통한 음원 인식 및 위치 추적 시스템 설계)

  • Kim, Woo-Jun;Kim, Young-Sub;Lee, Gwang-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.8
    • /
    • pp.759-766
    • /
    • 2016
  • This paper is on a system design of recognizing sound sources and tracing locations from detecting a section of sound sources which is strong in surrounding environmental sounds about sound sources occurring in an abnormal situation by using signals within the section. In detection of the section with strong sound sources, weighted average delta energy of a short section is calculated from audio signals received. After inputting it into a low-pass filter, through comparison of values of the output result, a section strong in background sound is defined. In recognition of sound sources, from data of the detected section, using an HMM(: Hidden Markov Model) as a traditional recognition method, learning and recognition are realized from creating information to recognize sound sources. About signals of sound sources that surrounding background sounds are included, by using energy of existing signals, after detecting the section, compared with the recognition through the HMM, a recognition rate of 3.94% increase is shown. Also, based on the recognition result, location grasping by using TDOA(: Time Delay of Arrival) between signals in the section accords with 97.44% of angles of a real occurrence location.