• Title/Summary/Keyword: Detailed Reaction Mechanics

Search Result 4, Processing Time 0.015 seconds

A Study on the Reduction of Reaction Mechanism for the Ignition of Dimethyl Ether (디메틸 에테르 착화에 관한 반응기구 축소 연구)

  • Ryu, Bong-Woo;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • The numerical analysis of the reduction of reaction mechanism for the ignition of dimethyl ether (DME) was performed. On the basis of a detailed reaction mechanism involving 79 species and 351 reactions, the peak molar concentration and sensitivity analysis were conducted in a homogeneous reactor model. The reduced reaction mechanism involving 44 species and 166 reactions at the threshold value $7.5{\times}10^{-5}$ of the molar peak concentration was established by comparing the ignition delays the reduced mechanism with those the detailed mechanism. The predicted results of the reduced mechanism applied to the single-zone homogeneous charge compression ignition (HCCI) engine model were in agreement with those of the detailed mechanism. Therefore, this reduced mechanism can be used to accurately simulate the ignition and combustion process of compression ignition engine using DME fuel.

Data-driven modeling of optimal intensity measure of soil-nailed wall structures

  • Massoumeh Bayat;Mahdi Bayat;Mahmoud Bayat
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.85-92
    • /
    • 2023
  • This article examines the seismic vulnerability of soil nail wall structures. Detailed information regarding finite element modeling has been provided. The fragility function evaluates the relationship between ground motion intensities and the probability of surpassing a specific level of damage. The use of incremental dynamic analysis (IDA) has been applied to the soil nail wall against low to severe ground motions. In the nonlinear dynamic analysis of the soil nail wall, a set of twenty seismic ground motions with varying PGA ranges are used. The numerical results demonstrate that the soil-nailed wall reaction is extremely sensitive to earthquake ground vibrations under different intensity measures (IM). In addition, the analytical fragility curve is provided for various intensity values.

Characteristic analysis on train-induced vibration responses of rigid-frame RC viaducts

  • Sun, Liangming;He, Xingwen;Hayashikawa, Toshiro;Xie, Weiping
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1015-1035
    • /
    • 2015
  • A three-dimensional (3D) numerical analysis for the train-bridge interaction (TBI) system is actively developed in this study in order to investigate the vibration characteristics of rigid-frame reinforced concrete (RC) viaducts in both vertical and lateral directions respectively induced by running high-speed trains. An analytical model of the TBI system is established, in which the high-speed train is described by multi-DOFs vibration system and the rigid-frame RC viaduct is modeled with 3D beam elements. The simulated track irregularities are taken as system excitations. The numerical analytical algorithm is established based on the coupled vibration equations of the TBI system and verified through the detailed comparative study between the computation and testing. The vibration responses of the viaducts such as accelerations, displacements, reaction forces of pier bottoms as well as their amplitudes with train speeds are calculated in detail for both vertical and lateral directions, respectively. The frequency characteristics are further clarified through Fourier spectral analysis and 1/3 octave band spectral analysis. This study is intended to provide not only a simulation approach and evaluation tool for the train-induced vibrations upon the rigid-frame RC viaducts, but also instructive information on the vibration mitigation of the high-speed railway.

Direct strength evaluation of the structural strength of a 500 cbm LNG bunkering ship

  • Muttaqie, Teguh;Jung, DongHo;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.781-790
    • /
    • 2022
  • The present paper describes a general procedure of the structural safety assessment for the independent type C tank of LNG bunkering ship. This strength assessment procedure consists of two main scheme, global Finite Element Analysis (FEA) model primarily for hull structure assessment and detailed LNG Tank structures FEA model including the cylindrical tank itself and saddle-support structures. Two kinds of mechanism are used, fixed and slides constraints in fore and rear of the saddle-support structures that result in a variation of the reaction forces. Finite Element (FE) analyses have been performed and verified by the strength acceptance criteria to evaluate the safety adequacy of yielding and buckling of the hull and supporting structures. The detail of FE model for an LNG type C tank and its saddle supports was made, which includes the structural members such as cylindrical tank shell, ring stiffeners, swash bulkhead, and saddle supports. Subsequently, the FE buckling analysis of the Type C tank has been performed under external pressure following International Gas Containment (IGC) code requirements. Meanwhile, the assessment is also performed for yielding and buckling strength evaluation of the cylindrical LNG tank according to the PD 5500 unfired fusion welded pressure vessels code. Finally, a complete procedure for assessing the structural strength of 500 CBM LNG cargo tank, saddle support and hull structures have been provided.