• 제목/요약/키워드: Design-experiment research

검색결과 2,199건 처리시간 0.033초

Development of An Integrated Test Facility (ITF) for the Advanced Man Machine Interface Evaluation

  • Oh, In-Seok;Cha, Kyung-Ho;Lee, Hyun-Chul;Sim, Bong-Sick
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.117-122
    • /
    • 1995
  • An Integrated Test Facility(ITF) is a human factors experimental environment to evaluate an advanced man machine interface(MMI) design. The ITF includes a human machine simulator(HMS) comprised of a nuclear power plant function simulator, man-machine interface, experiment control station for the experiment control and design, human behavioural data measurement system, and data analysis and experiment evaluation supporting system(DAEXESS). The most important features of ITF is to secure the flexibility and expandibility of Man Machine Interlace(MMI) design to change easily the environment of experiments to accomplish the experiment's objects In this paper, we describe a development scope and characteristics of the ITF such as, hardware and software development scope and characteristics, system thermohydraulic modelling characteristics, and experiment station characteristics for the experiment variables design and control, to be used as an experiment environment for the evaluation of VDU-based control room.

  • PDF

수학교육 연구에서 설계-실험 (Design-Experiment Research in Mathematics Education)

  • 정치봉
    • 한국학교수학회논문집
    • /
    • 제7권2호
    • /
    • pp.67-79
    • /
    • 2004
  • 교육/학습의 질이 실질적으로 향상되려면 연구가 교육 현장과 밀접하게 연계되어 실천 가능한 지식, 도구, 기술 등을 제공하여 주어야 한다. 실천적인 활용을 최우선으로 하는 설계-실험 연구의 다양한 연구 방법, 원칙, 주제 , 활동 내용 그리고 주요한 특징, 연구 사례 등을 소개한다.

  • PDF

Parametric Study on Oscillating Water Column Wave Energy Converter Applicable to Breakwater

  • Park, Sewan;Nam, Bo Woo;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.66-77
    • /
    • 2018
  • This paper presents a parametric study on an oscillating water column (OWC) wave energy converter (WEC). This OWC has been planned for installation in the breakwaters on isolated islands located away from the mainland. Both a numerical analysis and a model experiment are utilized for determining a proper conceptual design for this purpose. Various design parameters, including the configurations and dimensions, are evaluated through the numerical analysis, which is based on a potential flow theory, and several design concepts are then selected as candidates. The model experiment using a 2D wave flume is conducted to evaluate the effects of the design parameters and compare the performances of the candidates. Based on the overall results of the numerical analysis and model experiment, a conceptual design of the OWC WEC applicable to a breakwater is selected.

Design and Performance of an Automated Bioreactor for Cell Culture Experiments in a Microgravity Environment

  • Kim, Youn-Kyu;Park, Seul-Hyun;Lee, Joo-Hee;Choi, Gi-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권1호
    • /
    • pp.81-89
    • /
    • 2015
  • In this paper, we describe the development of a bioreactor for a cell-culture experiment on the International Space Station (ISS). The bioreactor is an experimental device for culturing mouse muscle cells in a microgravity environment. The purpose of the experiment was to assess the impact of microgravity on the muscles to address the possibility of long-term human residence in space. After investigation of previously developed bioreactors, and analysis of the requirements for microgravity cell culture experiments, a bioreactor design is herein proposed that is able to automatically culture 32 samples simultaneously. This reactor design is capable of automatic control of temperature, humidity, and culture-medium injection rate; and satisfies the interface requirements of the ISS. Since bioreactors are vulnerable to cell contamination, the medium-circulation modules were designed to be a completely replaceable, in order to reuse the bioreactor after each experiment. The bioreactor control system is designed to circulate culture media to 32 culture chambers at a maximum speed of 1 ml/min, to maintain the temperature of the reactor at $36{\pm}1^{\circ}C$, and to keep the relative humidity of the reactor above 70%. Because bubbles in the culture media negatively affect cell culture, a de-bubbler unit was provided to eliminate such bubbles. A working model of the reactor was built according to the new design, to verify its performance, and was used to perform a cell culture experiment that confirmed the feasibility of this device.

종이 헬리콥터 실험을 통한 강건설계의 이해 (Understanding Robust Design with Paper Helicopter Experiment)

  • 변재현;김용태;이민지
    • 대한산업공학회지
    • /
    • 제39권5호
    • /
    • pp.374-382
    • /
    • 2013
  • Robust design method developed by Genichi Taguchi has been very popular since the 1980s and there have been many academic and applied research works on this topic. However, college students and engineers in companies have had difficulty in understanding the method. This paper presents a procedure to implement the robust design method by an easy-to-execute paper helicopter experiment. A crossed array was adopted, which consists of a resolution IV fractional factorial design with 6 control factors and a factorial design with 3 noise factors. Three performance measures were analyzed; signal-to-noise ratio, mean, and standard deviation of the falling time of the paper helicopter that is to be maximized. Control-noise interaction plots are also given to evaluate the degree of the sensitivity of each level of the control factors to the noise factors. The procedure presented in this paper can be helpful to those who want to have basic knowledge in the robust design method.

Mathematical Problem Solving for Everyone: A Design Experiment

  • Quek, Khiok Seng;Dindyal, Jaguthsing;Toh, Tin Lam;Leong, Yew Hoong;Tay, Eng Guan
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제15권1호
    • /
    • pp.31-44
    • /
    • 2011
  • An impetus for reviving research in mathematical problem solving is the recent advance in methodological thinking, namely, the design experiment ([Gorard, S. (2004). Combining methods in educational research. Maidenhead, England: Open University Press.]; [Schoenfeld, A. H. (2009). Bridging the cultures of educational research and design. Educational Designer. 1(2). http://www.educationaldesigner.orgied/volume1/issue21]). This methodological approach supports a "re-design" of contextual elements to fulfil the overarching objective of making mathematical problem solving available to all students of mathematics. In problem solving, components critical to successful design in one setting that may be adapted to suit another setting include curriculum design, assessment strategy, teacher capacity, and instructional resources. In this paper, we describe the implementation, over three years, of a problem solving module into the main mathematics curriculum of an Integrated Programme school in Singapore which had sufficient autonomy to tailor-fit curriculum to their students.

지하철 환기시스템의 최적화에 관한 연구 (Study on optimization technique for the design of ventilation system of subway)

  • 김광용;조재형;리쉬밍;양태윤
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.630-639
    • /
    • 1998
  • The present research aimed at development of a computer code for the optimal design of ventilation system based on one-dimensional analysis of the air flow. Model experiment and three-dimensional flow analysis have been implemented to determine loss coefficients that were needed for the optimization technique. A research on optimum shape of ventilation shaft has been also carried out through the three-dimensional analysis of the flow.

  • PDF

Do Wearable Devices Change Behavior? A Study of Smart Fitness Trackers

  • Wan, Lili;Zhang, Chao
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제29권1호
    • /
    • pp.201-224
    • /
    • 2020
  • Purpose The study focuses on the physical activity behavior change effect of smart wristband, which is the most popular type of fitness tracker nowadays. The purpose of the research is to investigate how people's workout behavior may change after wearing a smart band and examine what kind of role persuasive design plays in behavior change. Design/Methodology/Approach This research employed an experimental study to examine whether the user's workout behaviors changed after using wristband from the "Behavior Wizard" perspective. A representative smart wristband from a major vendor was selected as the objects of experimental study. In the experiment, by comparing users' workout behavior before and after using the wristband, behavior changes of all the experiment participants were classified into one of the 15 behavior change types. Users perceived persuasive design characteristics were measured and group differences were tested among different behavior change groups. Findings This research found that nearly half of the participants changed their workout behavior while half retained their workout status or no exercise status. Half of the participants who did not do exercise in their spare time started walking in the experiment. Results also showed that participants who started working out perceived higher levels of persuasive design devised into the smart band than participants who preserved no exercise status, except for facilitation and reward strategies. Participants who retained workout and those who increased workout frequency perceived no difference in smart band persuasive design.

Experiment design and human reliability in software quality control system

  • Park, Peom
    • 품질경영학회지
    • /
    • 제20권2호
    • /
    • pp.94-108
    • /
    • 1992
  • This study involves an experiment for the cognitive experiment design and the human reliability in software engineering. Its overall objectives are to analyze common-cause human domain error and reliability in human-software interaction. A laboratory study was performed to analyze software engineers' task behavior in software production and to identify software design factors contributing to the effects in common cause failure redundancy. Common-cause model and its function were developed, then the main experiment using programming experts was conducted in order to define a new cognitive paradigm, in the aspects of identification, pattern recognition, and behavior domain for human reliability and quality control in software development. The results and analytical procedures developed in this research can be applied to reliability improvement and cost reduction in software development for many applications. Results are also expected to provide guidelines for software engineering quality control and for more effective design of human-software interface system.

  • PDF