• Title/Summary/Keyword: Design values

Search Result 6,935, Processing Time 0.03 seconds

Optimal Design Variables of a Parallel-Flow Heat Exchanger by Using a Desirability Function Approach (만족도 함수를 이용한 평행류 열교환기 설계인자 최적화)

  • Oh Seok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.587-595
    • /
    • 2005
  • The heat and flow characteristics in a parallel-flow heat exchanger were examined numerically to obtain its optimal design variables. A desirability function approach was introduced to optimize its performance with respect to the design parameters over the design domain. By varying the importance of heat transfer and pressure drop which are out put variables, the optimal values of the design parameters are examined. As a result, the us-age of the desirability function is very effective for the optimization of the design variables in a heat exchanger since the changes of optimal values are physically appropriate by varying the importance of each output variable.

The Study of the Stray Load Loss and Mechanical Loss of Three Phase Induction Motor considering Experimental Results

  • Kim, Dong-Jun;Choi, Jae-Hak;Chun, Yon-Do;Koo, Dae-Hyun;Han, Pil-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.121-126
    • /
    • 2014
  • The accurate determination of induction motor efficiency depends on the estimation of the five losses of stator and rotor copper loss, iron loss, mechanical loss and stray load loss. As the mechanical and stray load losses are not calculated by electro-magnetic analysis, the values of these two losses are very important in induction motor design. In this paper, the values of mechanical loss and stray load loss are proposed through investigating testing data from commercial products of three phase induction motors under 37kW. If the values of this paper are applied to motor design, the accuracy of design and analysis can be improved. The losses of motors are obtained by using load and no-load test results following IEC 60034-2-1 standard.

Design of optimized legged robots for safety structure using Jansen Mechanism and m.Sketch (Jansen Mechanism 과 m.Sketch 를 활용한 보행 로봇의 안전 최적 설계.)

  • Woo, Minhyuk
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.469-472
    • /
    • 2016
  • Jansen Mechanism has been a constant popularity by researchers studying legged robots because of many benefits. This paper proposed the design process of optimized legged robots using Jansen Mechanism and m.Sketch(Jansen Mechanism simulation software). First, driving part of legged robots is designed in compliance with the design regulations of a competitive exhibition. Second, setting the length of link and position of joint is conducted in keeping with the constraints. Third, Ground Length (GL) and Ground Angle Coefficient(GAC) values are extracted by m.Sketch simulation. Finally, by repeating the previous procedures, comparing the GL and GAC values, find the optimum input values. This.

  • PDF

Study for Determining Design Allowable Values of Light Weight Composite Unmanned Aircraft Structures (경량 복합재료 무인기 구조물 설계 허용치 설정 방안 연구)

  • Kim, Sung Joon;Park, Sang Wook;Kim, Tae Uk
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • The development of effective design allowable values for unmanned composite aircraft is an issue of paramount concern for the industry. The application of conventional manned aircraft structural certification methods to unmanned aircraft such as prototype and technology demonstrators, can lead to excessively long development time and costs. In this paper, the determining method of composite structure design allowable values for light composite unmanned aircraft is presented to reduce to the structural weight. This paper seeks to show the applicability of composite B-basis material values as a design allowable of light composite unmanned aircraft structures. A review of different civil and UAV targets failure probability is given. From the results, the researchers can know that the requirements of light composite unmanned aircraft design allowable should be alleviated, compared to manned composite aircrafts.

Geometric Design of Bus Bay Based on Vehicle Trajectory Analysis (차량 이동궤적 기반 버스정차대 기하구조 연구)

  • Kim, Yong Seok;Lee, Suk Ki
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.33-36
    • /
    • 2015
  • PURPOSES : It is desirable for buses to be parallel to the face of the bus shelter at a bus stop. In this way, passengers can safely use the buses without moving into the vehicle area. The study was a review of the current bus bay geometric guidelines, to determine whether they lead buses to stop parallel to the face of the bus shelter by analyzing vehicle trajectory. METHODS : A commercial software program for vehicle trajectory analysis was used under our assumptions about bus dimensions and geometric values. The final position of the bus was analyzed for multiple trajectory simulations, reflecting various geometric alternatives. RESULTS : Within the scope of the study, we concluded that the current design guidelines need to be revised by the design values suggested by the study. CONCLUSIONS : The results of the study suggested alternative design values for bus bay geometry, based on the assumption that buses should be parallel to the face of the bus shelter in order to prevent passengers from moving into the vehicle area.

A Methodology to Determine Composite Material Allowables and Design Values Using Building Block Approach (빌딩블록 접근법을 이용한 복합재 재료 허용치 및 설계치 설정 방법)

  • Kim, Sung Joon;Lee, Seung-gyu;Hwang, In-hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.377-384
    • /
    • 2022
  • In the design of composite aircraft structures, it is very important to set material allowables and design values, which take into account certification. And when determining the material allowable and design value of composite structures, the static strength, damage tolerance requirements, and environmental effects should be considered. The building block approach has been applied to the civil and military aviation industry for a long time and provides the principal certification methodology. This current certification methodology is based on extensive testing including coupon, element, sub-component, and full scale test. In this paper, some examples of composite allowable tests have been presented and the fundamental background and application methods of the building block approach have been presented.

A Study on the Leading Trends in Contemporary Public Design Analyzed in the Context of Main Social & Cultural Paradigms (현대의 사회.문화적 패러다임 변화와 연관된 공공디자인의 신경향 분석에 관한 연구)

  • Lee, Jeongmin
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.3
    • /
    • pp.76-86
    • /
    • 2012
  • 21st century has different characters from 20th century which was an era of machine and rationality based on the industrial revolution. With the advent of the digital revolution, it became an era of pluralism, culture, and emotion. The digital technology made it possible to connect the whole world together in real time and brought about the entirely new notion of time and space. It also dramatically altered the world view. Now we have a different set of social and cultural values from the past. This paper researched the influences of these social and cultural changes on public designs. The leading trends of public designs were analyzed and the successful cases were studied. The main research methodologies were the document review and the instrumental case study. The major social & cultural paradigms of a present era were classified as 'pluralism', 'digital & information revolution', 'human-centered value (against machine-centered value of 20th century)', and 'organic world view'. Each of the classified paradigms was analyzed more to find out the influences on the various trends of public designs. 'Pluralism' has influence on 'experiential public design', 'community art', and 'public design of local values'. 'Digital & information revolution' has influence on 'content-centered public design', 'smart public design', 'immaterial public design', and 'performance in public design'. 'Human-centered value' has influence on 'universal design approach in public design', and 'emotional public design'. 'Organic world view' has influence on 'sustainable public design', and 'ecological public design'.

  • PDF

Optimal Design of Mold Layout and Packing Pressure for Automobile TCU Connector Cover Based on Injection Molding Analysis and Desirability Function Method (사출성형 해석과 선호함수법에 기초한 자동차 TCU 커넥터 커버의 금형 레이아웃 및 보압의 최적 설계)

  • Park, Jong-Cheon;Yu, Man-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, the optimal design of the multi-cavity mold layout and packing pressure for the automobile TCU connector cover is determined based on the injection molding analysis and the desirability function method for multi-characteristic optimization. The design characteristics to be optimized are the warpage and sink marks of the product, the scrap of the feed system, and the clamping force. The optimal design is determined by performing injection molding analysis and desirability analysis for design alternatives defined by a complete combination of five mold layouts and six-level packing pressure. The optimal design shows that the desirability values for individual characteristics are quite high and balanced, and the resulting values of individual characteristics are satisfactorily low.

THICKNESS OPTIMIZATION OF AN AUTOMOBILE BODY FOR NATURAL FREQUENCY MAXIMIZATION

  • Panganiban, Henry;Jang, Gang-Won;Chung, Tae-Jin;Choi, Young-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.572-577
    • /
    • 2007
  • The paper presents design optimization of an automobile body for dynamic stiffness improvement. The thicknesses of plates making-up the monocoque body of an automobile were employed as design variables for optimization and the objective was to increase the first torsional and bending natural frequencies. By allotting one design variable to each plate of the body, compared to previous works based on element-wise design variables, design space of optimization was reduced to a large extent and numerical instabilities such as checkerboard pattern was efficiently evaded. The method resulted to a considerable amount of increase in the automobile body's torsional and bending natural frequencies. Considering manufacturability of the optimized result, the converged values of plate thicknesses were approximated to commercially-available values by appropriately reflecting their design sensitivities.

  • PDF

Maximum Likelihood (ML)-Based Quantizer Design for Distributed Systems

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.152-158
    • /
    • 2015
  • We consider the problem of designing independently operating local quantizers at nodes in distributed estimation systems, where many spatially distributed sensor nodes measure a parameter of interest, quantize these measurements, and send the quantized data to a fusion node, which conducts the parameter estimation. Motivated by the discussion that the estimation accuracy can be improved by using the quantized data with a high probability of occurrence, we propose an iterative algorithm with a simple design rule that produces quantizers by searching boundary values with an increased likelihood. We prove that this design rule generates a considerably reduced interval for finding the next boundary values, yielding a low design complexity. We demonstrate through extensive simulations that the proposed algorithm achieves a significant performance gain with respect to traditional quantizer designs. A comparison with the recently published novel algorithms further illustrates the benefit of the proposed technique in terms of performance and design complexity.