• Title/Summary/Keyword: Design suction pressure

Search Result 157, Processing Time 0.033 seconds

Design for Installation of Suction Piles in Sand Deposits for Mooring of Floating Offshore Structures (부유식 해상구조물의 계류를 위한 사질토 지반의 석션파일 설계)

  • Park, Chul-Soo;Lee, Ju-Hyung;Baek, Du-Hyun;Do, Jin-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.33-44
    • /
    • 2014
  • The preliminary design of suction pile as the supporting system for concrete floating structures was performed for the pilot project of the southwest coast area in Korea. Prior to starting design work, site conditions of the area including ground and hydraulic conditions, and a 100-year return period external force were throughly evaluated. The suction pile for mooring of the offshore floating structures has to satisfy the lateral resistance against external force as well as the penetration ability according to the soil conditions such as soil types, shear strengths, effective stresses, and seepage forces. In the design, the required penetration depths, which were stable for lateral resistance, were evaluated with the diameters of cylindrical suction pile as the final installing ones. And the design suction pressures at each penetrating depths, at which sand boiling did not occur, were assessed through the comparison of penetration and penetrationresistance forces. As a result, it was impossible for suction piles with the diameter range of 3.0~5.0 m to penetrate into required penetration depths. On the other hand, suction piles with the diameter range of 6.0 m and 7.0 m satisfied both the horizontal stability and the penetration ability by design suction pressures at the required penetration depths of 8.5 m and 8.0 m, respectively.

A Study of Design Method of an Axial-Type Suction Fan (축류형 흡입송풍기 설계기술에 관한 연구)

  • Choi, Hyoung-Jun;Kim, Chang-Su;Cho, Chong-Hyun;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.42-51
    • /
    • 2010
  • Many different types of fan have been applying to various industrial fields. Fan design methods are much different depending on the types of fan, operating conditions, and connecting parts at the inlet or exit of the fan etc. In this study, design methods for an axial-type suction fan are studied. This fan discharges the air in the relative static pressure of -285Pa to the atmosphere with the flow rate of $960m^3/min$. For three-dimensional blade design, three different design methods were applied, such as the free vortex method, the exponential method, and the cascade method. In the cascade method, the blade loading along the radial direction was obtained from the lift coefficient which was necessary to obtain the pressure rise on a fan rotor. This method is different from the free vortex and the exponential method which control the strength of the vortex. The fan performance prediction was conducted using the CFD with three different inlet ducts. The best fan performance was obtained when the fan was designed by using the cascade method. The designed fan using the exponential method showed better performance compared to a fan designed using the free vortex method. However, the fan performance was changed depending on the installed inlet ducts. So, an efficient fan can be designed with the adjustment of design variables on the basis of the flow structures within the fan as well as the fan design procedure.

Cyclone Type Filter for Preventing Clogging of High Pressure Coolant Pump (고압 쿨런트 펌프의 막힘 방지를 위한 사이클론 타입 필터)

  • Kim, Jun-Hwan;Kang, Ji-Hun;Kang, Seong-Gi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.599-604
    • /
    • 2015
  • Currently, the coolant system in industrial sites is an efficient process to keep clean cutting oils. However, the damage to a pump occurs due to a chip and debris when inhaled into the pump, and thus problems such as the reduction of both efficiency and lifespan might arise. In this study, a new type of filter was developed in order to primarily prevent the damage from the pump impeller and make it unnecessary to have the replacement and cleaning at the same time. This study found the problem reducing the suction volumetric efficiency and cavitation when inhaled, and conducted a method to solve the problem compared to the result of fluid analysis according to two velocity conditions. As a result, this study achieved the effect of lowering the pressure and meeting the suction flow rate by connecting the four filters.

Design of Port Plate in Gerotor Pump for Reduction of Pressure Pulsation

  • Kim Sang-Yeol;Nam Yun-Joo;Park Myeong-Kwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1626-1637
    • /
    • 2006
  • The pressure pulsation due to the gear geometry of the gerotor (generalized rotor) pump mainly occurs in an instant that the chamber of the gerotor enters the delivery port and leaves the suction one. Such a pressure pulsation may result in undesirable vibration and noise of pump components as well as cavitation in hydraulic system. Therefore, it is very important to examine the pressure characteristic of the gerotor pump at its design and analysis stages. In this paper, in order to reduce the pressure pulsation in the gerotor pump, the port plate with the relief grooves is designed by referring to as notch of vane pump and relief groove of piston pump. A series of the theoretical analyses on the pressure pulsation is performed in consideration of various design parameters of the port plate, including the installation positions of the port inlet/outlet and the groove width, and the operating conditions such as rotational velocity and delivery pressure.

Installation of Suction Caisson Foundation for Offshore Wind Turbine : Model Test (해상풍력타워 석션기초의 설치시 거동에 대한 모형 시험 연구)

  • Kim, Dong-Joon;Kim, Su-Rin;Choo, Yun-Wook;Kim, Dong-Soo;Lee, Man-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.825-839
    • /
    • 2010
  • The global and domestic market for offshore wind farm is expected to grow fast, and the design and installation of substructure and foundation is getting more important. As for the offshore wind farms located in the shallow(depth < 20m) water, the construction and installation of the substructure and foundation makes up about 1/4 ~1/3 of the offshore wind farm construction cost, and the portion is expected to increase because the turbine capacity is increasing from 2 ~ 3MW to 5MW or larger and the water depth of wind farms is also increasing over 30m. As a foundation for offshore wind turbine, the suction caisson foundation is being considered to be a highly competitive alternative to the conventional monopile or gravity based structure, because it has features suitable for the offshore construction such as quick installation, no heavy equipment for penetration and no hammering noise for driving. In order to study the installation behaviour of the suction caisson, laboratory tests were performed with sand. The pore water pressure and displacement were measured to analyze the suction pressure during penetration, the penetration speed and the amount of heaving.

  • PDF

Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes (금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활)

  • Kim, Dong Geun;Jang, Changhwan;Kim, Seong Jae;Kim, Daegyoum;Kim, Sanha
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

THE PERFORMANCE ANALYSIS OF A CWP PUMP FOR A NUCLEAR POWER PLANT (원자력 발전소용 순환수 펌프의 성능해석)

  • Lee, M.S.;Han, B.Y.;Hwang, D.Y.;Yoo, S.S.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.232-238
    • /
    • 2009
  • The objective of this study is to investigate the suitable design for a domestic CWP pump, which is used in cooling-water intakes for the unit 3 and 4 of Yeonggwang nuclear power plant. All the simulations are performed, using CFD method with a commercial code STAR-CCM+ version 3.02. After modeling a present design of the pump, the flow around the rotating blade was calculated by using quasi-static method and sliding mesh method with the almost same condition as an actual state. Based on fundamental simulations with various depth of sea water, the reference pressure for the boundary condition of the present study was decided. To verify the reliability of the calculation results, the suction flow rate of the data was compared with that of the experimental data. As a result of this comparison, it is confirmed that two results are fairly consistent. For the improvement of the suction flow rate, computational analysis was done by changing a flow channel and blade shapes. It is shown that the suction flow rate of the new pump was improved.

  • PDF

THE PERFORMANCE ANALYSIS OF A CIRCULATING WATER PUMP FOR A NUCLEAR POWER PLANT (원자력 발전소용 순환수 펌프의 성능해석)

  • Lee, M.S.;Han, B.Y.;Hwang, D.Y.;Yoo, S.S.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.69-75
    • /
    • 2009
  • The objective of this study is to investigate the suitable design for a domestic Circulating water pump(CWP), which is used in cooling-water intakes for the unit 3 and 4 of Yeonggwang nuclear power plant. All the simulations are performed, using CFD method with a commercial code STAR-CCM+ version 3.02. After modeling a present design of the pump, the flow around the rotating blade was calculated by using quasi-static method and sliding mesh method with the almost same condition as an actual state. Based on fundamental simulations with various depth of sea water, the reference pressure for the boundary condition of the present study was decided. To verify the reliability of the calculation results, the suction flow rate of the data was compared with that of the experimental data. As a result of this comparison, it is confirmed that two results are fairly consistent. For the improvement of the suction flow rate, computational analysis was done by changing a flow channel and blade shapes. It is shown that the suction flow rate of the new pump was improved.

Inducer Design to Avoid Cavitation Instabilities

  • Kang, Dong-Hyuk;Watanabe, Toshifumi;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.439-448
    • /
    • 2009
  • Three inducers were designed to avoid cavitation instabilities. This was accomplished by avoiding the interaction of tip cavity with the leading edge of the next blade. The first one was designed with extremely larger leading edge sweep, the second and third ones were designed with smaller incidence angle by reducing the inlet blade angle or increasing the design flow rate, respectively. The inducer with larger design flow rate has larger outlet blade angle to obtain sufficient pressure rise. The inducer with larger sweep could suppress the cavitation instabilities in higher flow rates more than 95% of design flow coefficient, owing to weaker tip leakage vortex cavity with stronger disturbance by backflow vortices. The inducer with larger outlet blade angle could avoid the cavitation instabilities at higher flow rates, owing to the extension of the tip cavity along the suction surface of the blade. The inducer with smaller inlet blade angle could avoid the cavitation instabilities at higher flow rates, owing to the occurrence of the cavity first in the blade passage and its extension upstream. The cavity shape and suction performance were reasonably simulated by three dimensional CFD computations under the steady cavitating condition, except for the backflow vortex cavity. The difference in the growth of cavity for each inducer is explained from the difference of the pressure distribution on the suction side of the blades.