• Title/Summary/Keyword: Design suction pressure

Search Result 157, Processing Time 0.029 seconds

An Experimental Study on the High Performance Optimal Discharge System of a Rotary Compressor for an Air Conditioner using alternative Refrigerant R410a (대체냉매 공기조화기용 로터리 압축기의 성능향상을 위한 최적 토출계에 관한 실험적 연구)

  • Youn, Young;Chung, Jin-Taek;Min, Man-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.96-105
    • /
    • 2001
  • R410a which is one of HFC refrigerants is being considered to be a promising replacement for R22 widely used in domestic air conditioners. The rolling piston type rotary compressors for R410a have lower energy efficiency than those for R22 because of the high pressure difference between a suction chamber and a discharge chamber in the compression mechanism. in addition, the re-expansion gas loss of the rotary compressor for R410a which occurs a ta clearance volume in a discharge port becomes larger than that for R22 due to high density of R410a refrigerant. Therefore, Pressure-Volume analyses for various design parameters of a discharge system were carried out to improve efficiency of a R410a rotary compressor. The results such as performance dta, over-compression loss, and re-expansion loss were acquired by P-V analyses and analyzed quantitatively. As a conclusion, the optimal specifications of several design parameters of a discharge system were obtained by analyzing P-V diagrams.

  • PDF

Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 성능 해석)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Numerical Study About the Effect of the Low Reynolds Number on the Performance in an Axial Compressor (저 레이놀즈 수가 압축기 성능에 미치는 영향에 대한 수치적 연구)

  • Choi, Min-Suk;Chung, Hee-Taeg;Oh, Seong-Hwan;Ko, Han-Young;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.83-91
    • /
    • 2008
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density because it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise was diminished by the separation on the suction surface with full span and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 85% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as the profile loss, the tip leakage loss and the endwall loss using Denton#s loss model, and the effects of the low Reynolds number on the performance were analyzed in detail.

CFD Analysis on the 2nd Cylinder Discharge line in Hydrogen Reciprocating Compressor

  • Lee, Gyeong-Hwan;Woo, Ju-Sik;Shin, Yong-Han;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.695-702
    • /
    • 2010
  • Numerical analysis information will be very useful to improve fluid system. General information about an internal gas flow is presented by numerical analysis approach. Relating with hydrogen compressing system, which have an important role in hydrogen energy utilization, this should be a useful tool to observe the flow quickly and clearly. Flow characteristic analysis, including pressure and turbulence kinetic energy distribution of hydrogen gas coming to the cylinder of a reciprocating compressor are presented in this paper. Suction-passage model is designed based on real model of hydrogen compressor. Pressure boundary conditions are applied considering the real condition of operating system. The result shows pressure and turbulence kinetic energy are not distributed uniformly along the passage of the Hydrogen system. Path line or particles tracks help to demonstrate flow characteristics inside the passage. The existence of vortices and flow direction can be precisely predicted. Based on this result, the design improvement, such as reducing the varying flow parameters and flow reorientation should be done. Consequently, development of the better hydrogen compressing system will be achieved.

EFFECTS OF THE LOW REYNOLDS NUMBER ON THE PERFORMANCE OF AN AXIAL COMPRESSOR (저 레이놀즈 수가 압축기 성능에 미치는 영향)

  • Choi, Min-Suk;Baek, Je-Hyun;Oh, Seong-Hwan;Ko, Han-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.138-141
    • /
    • 2007
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density became it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise wag diminished by the separation on the suction surface and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 90% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss using Denton's loss model, and effects of the low Reynolds number on the performance were analyzed in detail.

  • PDF

Computation of Turbulent Flows and Radiated Sound From Axial Compressor Cascade

  • Lee, Seungbae;Kim, Hooi-Joong;Kim, Jin-Hwa;Song, Seung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.272-285
    • /
    • 2004
  • The losses at off-design points from a compressor cascade occur due to the deviation from a design incidence angle at the inlet of the cascade. The self-noise from the blade cascade at off-design points comes from a separated boundary layer and vortex sheddings. If the incidence angle to the cascade increases, stalling in blades may occur and the noise level increases significantly. This study applied Large-Eddy Simulations (LES) using deductive and deductive dynamic SGS models to low Mach-number, turbulent flow with each incidence angle to the cascade ranging from -40$^{\circ}$ to +20$^{\circ}$ and compared numerical predictions with measured data. It was observed that the oscillating separation bubbles attached to the suction surface do not modify wake flows dynamically for cases of negative incidence angles. However, an incidence angle greater than 8$^{\circ}$ caused a separated vortex near the leading edge to be shed downstream and created stalling. The computed performance parameters such as drag coefficient and total pressure loss coefficient showed good agreement with experimental results. Noise from the cascade of the compressor is summarized as sound generated by a structure interacting with unsteady, turbulent flows. The hybrid method using acoustic analogy was observed to closely predict the measured overall sound powers and directivity patterns at design and off-design points of blade cascade.

Experimental research on design wind loads of a large air-cooling structure

  • Yazhou, Xu;Qianqian, Ren;Guoliang, Bai;Hongxing, Li
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.215-224
    • /
    • 2019
  • Because of the particularity and complexity of direct air-cooling structures (ACS), wind parameters given in the general load codes are not suitable for the wind-resistant design. In order to investigate the wind loads of ACS, two 1/150 scaled three-span models were designed and fabricated, corresponding to a rigid model and an aero-elastic model, and wind tunnel tests were then carried out. The model used for testing the wind pressure distribution of the ACS was defined as the rigid model in this paper, and the stiffness of which was higher than that of the aero-elastic model. By testing the rigid model, the wind pressure distribution of the ACS model was studied, the shape coefficients of "A" shaped frame and windbreak walls, and the gust factor of the windbreak walls were determined. Through testing the aero-elastic model, the wind-induced dynamic responses of the ACS model was studied, and the wind vibration coefficients of ACS were determined based on the experimental displacement responses. The factors including wind direction angle and rotation of fan were taken into account in this test. The results indicated that the influence of running fans could be ignored in the structural design of ACS, and the wind direction angle had a certain effect on the parameters. Moreover, the shielding effect of windbreak walls induced that wind loads of the "A" shaped frame were all suction. Subsequently, based on the design formula of wind loads in accordance with the Chinese load code, the corresponding parameters were presented as a reference for wind-resistant design and wind load calculation of air-cooling structures.

An experimental investigation into cavitation behaviour and pressure characteristics of alternative blade sections for propellers

  • Korkut, Emin;Atlar, Mehmet;Wang, Dazheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.81-100
    • /
    • 2013
  • During the final quarter of the last century considerable efforts have been spent to reduce the hull pressure fluctuations caused by unsteady propeller cavitation. This has resulted in further changes in propeller design characteristics including increased skew, tip unloading and introduction of "New Blade Sections" (NBS) designed on the basis of the so-called Eppler code. An experimental study was carried out to investigate flow characteristics of alternative two-dimensional (2-D) blade sections of rectangular planform, one of which was the New Blade Section (NBS) developed in Newcastle University and other was based on the well-known National Advisory Committee for Aeronautics (NACA) section. The experiments comprised the cavitation observations and the measurements of the local velocity distribution around the blade sections by using a 2-D Laser Doppler Anemometry (LDA) system. Analysis of the cavitation tests demonstrated that the two blade sections presented very similar bucket shapes with virtually no width at the bottom but relatively favourable buckets arms at the suction and pressure sides for the NACA section. Similarly, pressure analysis of the sections displayed a slightly larger value for the NBS pressure peak. The comparative overall pressure distributions around the sections suggested that the NBS might be more susceptible to cavitation than the NACA section. This can be closely related to the fundamental shape of the NBS with very fine leading edge. Therefore a further investigation into the modification of the leading edge should be considered to improve the cavitation behaviour of the NBS.

Design and Prediction of Three Dimensional Flows in a Low Speed Highly Loaded Axial Flow Fan

  • Liu, Xuejiao;Chen, Liu;Dai, Ren;Yang, Ailing
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.94-104
    • /
    • 2013
  • This paper describes the design to increase the blade loading factor of a low speed axial flow fan from normal 0.42 to highly loaded 0.55. A three-dimensional viscous solver is used to model the flows in the highly-loaded and normal loaded stages over its operation range. At the design point operation the static pressure rise can be increased by 20 percent with a deficit of efficiency by 0.3 percent. In the highly loaded fan stage, the rotor hub flow stalls, and separation vortex extends over the rotor hub region. The backflow, which occurs along the stator hub-suction surface, changes the exit flow from the prescribed axial direction. Results in this paper confirm that the limitation of the two dimensional diffusion does not affect primarily on the fan's performance. Highly loaded fan may have actually better performance than its two dimensional design. Three dimensional designing approaches may lead to better highly loaded fan with controlled rotor hub stall.