• Title/Summary/Keyword: Design structure

Search Result 17,874, Processing Time 0.05 seconds

A Study of Feasibility of Dipole-dipole Electric Method to Metallic Ore-deposit Exploration in Korea (국내 금속광 탐사를 위한 쌍극자-쌍극자 전기탐사의 적용성 연구)

  • Min, Dong-Joo;Jung, Hyun-Key;Park, Sam-Gyu;Chon, Hyo-Taek;Kwak, Na-Eun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.250-262
    • /
    • 2008
  • In order to assess the feasibility of the dipole-dipole electric method to the investigation of metallic ore deposit, both field data simulation and inversion are carried out for several simplified ore deposit models. Our interest is in a vein-type model, because most of the ore deposits (more than 70%) exist in a vein type in Korea. Based on the fact that the width of the vein-type ore deposits ranges from tens of centimeters to 2m, we change the width and the material property of the vein, and we use 40m-electrode spacing for our test. For the vein-type model with too small width, the low resistivity zone is not detected, even though the resistivity of the vein amounts to 1/300 of that of the surrounding rock. Considering a wide electrode interval and cell size used in the inversion, it is natural that the size of the low resistivity zone is overestimated. We also perform field data simulation and inversion for a vein-type model with surrounding hydrothermal alteration zones, which is a typical structure in an epithermal ore deposits. In the model, the material properties are assumed on the basis of resistivity values directly observed in a mine originated from an epithermal ore deposits. From this simulation, we can also note that the high resistivity value of the vein does not affect the results when the width of the vein is narrow. This indicates that our main target should be surrounding hydrothermal alteration zones rather than veins in field survey. From these results, we can summarize that when the vein is placed at the deep part and the difference of resistivity values between the vein and the surrounding rock is not large enough, we cannot detect low resistivity zone and interpret the subsurface structures incorrectly using the electric method performed at the surface. Although this work is a little simple, it can be used as references for field survey design and field data Interpretation. If we perform field data simulation and inversion for a number of models and provide some references, they will be helpful in real field survey and interpretation.

A Study on the Structure Characteristics of Planting Ground in Incheon International Airport, Korea (인천국제공항 식재기반 구조 및 토양특성 연구)

  • Lee, Seung-Won;Han, Bong-Ho;Lee, Kyong-Jae;Kwak, Jeong-In;Yeum, Jung-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.77-91
    • /
    • 2015
  • This study aims to suggest adequate soil management through the analysis of physicochemical properties of soil in the planting grounds of Incheon International Airport, which was constructed on a massive land reclamation site. Study areas were 5 sites at the international business complex, the passenger terminal, the airport support complex, the free trade zone, and the access road. Soil profile analysis showed that 9 plots out of the 27 plots were hardpan and heterospere within 80cm from the soil surface. The earth laid on the ground was categorized as gravel based soil(4 plots), dredged soil from the sea bottom and mixed reclamation materials(2 plots), clay with poor permeability(3 plots) and waste construction material(1 plot). Average soil hardness was $11.5kg/cm^2$ and soil textures were sandy soil, sandy loam and loamy sand. Average soil pH was 6.7 and average organic matter content was 0.7%. Electrical conductivity was 0.0dS/m and exchangeable cation concentrations were $Ca^{2+}$ 3.4cmol/kg, $Mg^{2+}$ 1.5cmol/kg, $K^+$ 0.3cmol/kg and $Na^+$ 1.0cmol/kg. Average cation exchange capacity was 11.0cmol/kg. Although average figures in Solum mostly meet the landscape design criteria, properties of each soil layer showed various values sometimes over the limit. Base saturations were $Ca^{2+}$ 29.9%, $Mg^{2+}$ 13.3% and $K^+$ 3.7% for lower soil, $Ca^{2+}$ 33.3%, $Mg^{2+}$ 17.0% and $K^+$ 2.7% for mid-soil and $Ca^{2+}$ 32.6%, $Mg^{2+}$ 12.2% and $K^+$ 1.9% for upper soil. Exchangeable sodium percentages were 16.4% for lower soil, 7.5% for mid-soil and 4.7% upper soil. Sodium adsorption rates were 0.8 for lower soil, 0.3 for mid-soil and 0.2 for upper soil. Factors affecting to the vegetation growth were heterogeneity and poorness of solum, disturbance of dredged soils, high soil hardness including hardpan in the subsurface soil layer and shallow effective soil depth, high soil acidity, imbalance of base contents, low organic matter content and low available phosphate levels in the soil.

A Study of Visualization and Analysis Method about Plants Social Network Used for Planting Design - Focusing on Forest Vegetation Area in Busan Metropolitan City - (식재설계에 활용 가능한 식물사회네트워크 시각화 및 분석 방법에 관한 연구 - 부산광역시 산림식생지역을 중심으로 -)

  • Lee, Sang-Cheol;Choi, Song-Hyun;Cho, Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.3
    • /
    • pp.259-270
    • /
    • 2020
  • Plants Social Network (PSN) was first used in recent studies to incorporate the plant sociology methods for the understanding of plant society with the social network analysis methods that have recently attracted attention in the social science and visualize and analyze a PSN. The process of construction and analysis on PSN proceeds in the order of setting up the survey area, investigating the appearance plants species on plots of 100㎡, analyzing the interspecific association, building the sociogram, and analyzing the network structure and centrality. This study established a PSN by investigating the appearance species after installing 708 plots to include various dominant vegetational physiognomies in Busan Metropolitan City, where coastal and inland vegetation could be observed simultaneously. The survey found a total of 195 species, including 42 species of evergreen, 151 species of deciduous trees, and 2 species of semi-evergreen trees. The interspecies binding analysis was performed with the focus on the total number of species. It showed the number of friendly species in the order of Eurya japonica (47 species), Trachelospermum asiaticum (46 species), Linder glauca (44 species), Sorbus alnifolia (44 species), and Ligustrum japonicum (41 species). Based on it, we generated a sociogram using Gephi 0.9.2 program. The sociogram was divided into groups that appeared mostly on the coast and those that did not, reflecting the geographical distribution characteristics of forest vegetation in Busan. The analysis of the network structured showed 1,709 links and an average of 17.5 species having interspecies binding with a species. The density was 0.09, the diameter was 5, and the average path distance was 2.268. We concluded that various PSNs should be established in the future for precise comparative analysis of network characteristics in the social science field. In the PSN of Busan Metropolitan City, Eurya japonica, Linder glauca, Ligustrum japonicum, and Trachelospermum asiaticum showed high centrality.

N- and P-doping of Transition Metal Dichalcogenide (TMD) using Artificially Designed DNA with Lanthanide and Metal Ions

  • Kang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.292-292
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with a two-dimensional layered structure have been considered highly promising materials for next-generation flexible, wearable, stretchable and transparent devices due to their unique physical, electrical and optical properties. Recent studies on TMD devices have focused on developing a suitable doping technique because precise control of the threshold voltage ($V_{TH}$) and the number of tightly-bound trions are required to achieve high performance electronic and optoelectronic devices, respectively. In particular, it is critical to develop an ultra-low level doping technique for the proper design and optimization of TMD-based devices because high level doping (about $10^{12}cm^{-2}$) causes TMD to act as a near-metallic layer. However, it is difficult to apply an ion implantation technique to TMD materials due to crystal damage that occurs during the implantation process. Although safe doping techniques have recently been developed, most of the previous TMD doping techniques presented very high doping levels of ${\sim}10^{12}cm^{-2}$. Recently, low-level n- and p-doping of TMD materials was achieved using cesium carbonate ($Cs_2CO_3$), octadecyltrichlorosilane (OTS), and M-DNA, but further studies are needed to reduce the doping level down to an intrinsic level. Here, we propose a novel DNA-based doping method on $MoS_2$ and $WSe_2$ films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures. The available n-doping range (${\Delta}n$) on the $MoS_2$ by Ln-DNA (DNA functionalized by trivalent Ln ions) is between $6{\times}10^9cm^{-2}$ and $2.6{\times}10^{10}cm^{-2}$, which is even lower than that provided by pristine DNA (${\sim}6.4{\times}10^{10}cm^{-2}$). The p-doping change (${\Delta}p$) on $WSe_2$ by Ln-DNA is adjusted between $-1.0{\times}10^{10}cm^{-2}$ and $-2.4{\times}10^{10}cm^{-2}$. In the case of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions) doping where $Eu^{3+}$ or $Gd^{3+}$ ions were incorporated, a light p-doping phenomenon is observed on $MoS_2$ and $WSe_2$ (respectively, negative ${\Delta}n$ below $-9{\times}10^9cm^{-2}$ and positive ${\Delta}p$ above $1.4{\times}10^{10}cm^{-2}$) because the added $Cu^{2+}$ ions probably reduce the strength of negative charges in Ln-DNA. However, a light n-doping phenomenon (positive ${\Delta}n$ above $10^{10}cm^{-2}$ and negative ${\Delta}p$ below $-1.1{\times}10^{10}cm^{-2}$) occurs in the TMD devices doped by Co-DNA with $Tb^{3+}$ or $Er^{3+}$ ions. A significant (factor of ~5) increase in field-effect mobility is also observed on the $MoS_2$ and $WSe_2$ devices, which are, respectively, doped by $Tb^{3+}$-based Co-DNA (n-doping) and $Gd^{3+}$-based Co-DNA (p-doping), due to the reduction of effective electron and hole barrier heights after the doping. In terms of optoelectronic device performance (photoresponsivity and detectivity), the $Tb^{3+}$ or $Er^{3+}$-Co-DNA (n-doping) and the $Eu^{3+}$ or $Gd^{3+}$-Co-DNA (p-doping) improve the $MoS_2$ and $WSe_2$ photodetectors, respectively.

  • PDF

A Study on Formative Background and Spatial Characteristics of Katsura Imperial Villa (카츠라리큐(桂離宮, 계리궁)의 형성배경 및 공간특성)

  • Yeom, Sung-Jin;An, Seung-Hong;Yoon, Sung-Yung;Yoon, Sang-Jun;Son, Yong-Hoon;Lee, Won-Ho
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.4
    • /
    • pp.140-147
    • /
    • 2015
  • The garden culture of Korea and Japan have been commonly influenced by Wonrim culture of China. Nevertheless, each culture has been settled down through the development of the two separate garden cultures, The purpose of this study is to grasp the formation background and main agent of development through theoretical consideration of gardens in Japanese Imperial Garden Katsura Imperial Villa, which is the origin of the representative garden making style-Circuit Style Garden, to look into the characteristic of spatial organization elements by conducting on-site survey and interview with a garden manager, and to obtain elementary views on Katsura Imperial Villa which is an important case of Japanese garden culture. As a result; first, Katsura Imperial Villa is the first jicheol juyu(round tour of ponds and springs) circuit style garden created by Toshihito Emperor and his son Toshitada Emperor, who were well-versed in Waka through the dynasty literature based on the story of Genji throughout about two generations lasting about 30 years; space composition of this garden is divided into land, island and water space, being composed of a total of 36 space components. Second, Katsura Imperial Villa was created with the primary goal of making a round tour around the garden land by arranging tea pavilions, such as Shokintei, Shokatei and Shoiken, etc., which introduced the then game culture into the garden. Third, the personnel in Katsura Imperial Villa intended to enjoy the scenic characteristics of the area where Katsura Imperial Villa was located from the interior of the garden by making Gepparo which was a tea pavilion for enjoying the rising moon on the hill even a litter faster and longer by piling up earth and setting up stone walls north of Koshoin which was a structure located west of the garden land.

The Current Status of Recycling Process and Problems of Recycling according to the Packaging Waste of Korea (국내 포장 폐기물에 따른 재질별 재활용 공정 현황 및 재활용 문제점)

  • Ko, Euisuk;Shim, Woncheol;Lee, Hakrae;Kang, Wookgeon;Shin, Jihyeon;Kwon, Ohcheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.65-71
    • /
    • 2018
  • Paper packs, glass bottles, metal cans, and plastic materials are classified according to packaging material recycling groups that are Extended Producer Responsibility (EPR). In the case of waste paper pack, the compressed cartons are dissociated to separate polyethylene films and other foreign substance, and then these are washed, pulverized and dried to produce toilet paper. Glass bottle for recycling is provided to the bottle manufacturers after the process of collecting the waste glass bottle, removing the foreign substance, sorting by color, crushing, raw materializing process. Waste glass recycling technology of Korea is largely manual, except for removal of metal components and low specific gravity materials. Metal can is classified into iron and aluminum cans through an automatic sorting machine, compressed, and reproduced as iron and aluminum through a blast furnace. In the case of composite plastic material, the selected compressed product is crushed and then recycled through melt molding and refined products are produced through solid fuel manufacturing steps through emulsification and compression molding through pyrolysis. In the recycling process of paper packs, glass bottles, metal cans, and plastic materials, the influx of recycled materials and other substances interferes with the recycling process and increases the recycling cost and time. Therefore, the government needs to improve the legal system which is necessary to use materials and structure that are easy to recycle from the design stage of products or packaging materials.

Using a Learning Progression to Characterize Korean Secondary Students' Knowledge and Submicroscopic Representations of the Particle Nature of Matter (Learning Progression을 적용한 중·고등학생의 '물질의 입자성'에 관한 지식과 미시적 표상에 대한 특성 분석)

  • Shin, Namsoo;Koh, Eun Jung;Choi, Chui Im;Jeong, Dae Hong
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.5
    • /
    • pp.437-447
    • /
    • 2014
  • Learning progressions (LP), which describe how students may develop more sophisticated understanding over a defined period of time, can inform the design of instructional materials and assessment by providing a coherent, systematic measure of what can be regarded as "level appropriate." We developed LPs for the nature of matter for grades K-16. In order to empirically test Korean students, we revised one of the constructs and associated assessment items based on Korean National Science Standards. The assessment was administered to 124 Korean secondary students to measure their knowledge and submicroscopic representations, and to assign them to a level of learning progression for the particle nature of matter. We characterized the level of students' understanding and models of the particle nature of matter, and described how students interpret various representations of atoms and molecules to explain scientific phenomena. The results revealed that students have difficulties in understanding the relationship between the macroscopic and molecular levels of phenomena, even in high school science. Their difficulties may be attributed to a limited understanding of scientific modeling, a lack of understanding of the models used to represent the particle nature of matter, or limited understanding of the structure of matter. This work will inform assessment and curriculum materials development related to the fundamental relationship between macroscopic, observed phenomena and the behavior of atoms and molecules, and can be used to create individualized learning environments. In addition, the results contribute to scientific research literature on learning progressions on the nature of matter.

Analyzing the Characteristics of Pre-service Elementary School Teachers' Modeling and Epistemic Criteria with the Blackbox Simulation Program (블랙박스 시뮬레이션에 참여한 초등예비교사의 모형 구성의 특징과 인식적 기준)

  • Park, Jeongwoo;Lee, Sun-Kyung;Shim, Han Su;Lee, Gyeong-Geon;Shin, Myeong-Kyeong
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • In this study, we investigated the characteristics of participant students' modeling with the blackbox simulation program and epistemic criteria. For this research, we developed a blackbox simulation program, which is an ill-structured problem situation reflecting the scientific practice. This simulation program is applied in the activities. 23 groups, 89 second year students of an education college participated in this activity. They visualized, modeled, modified, and evaluated their thoughts on internal structure in the blackbox. All of students' activities were recorded and analyzed. As a result, the students' models in blackbox activities were categorized into four types considering their form and function. Model evaluation occurred in group model selection. Epistemic criteria such as empirical coherence, comprehensiveness, analogy, simplicity, and implementation were adapted in model evaluation. The educational implications discussed above are as follows: First, the blackbox simulation activities in which the students participated in this study have educational implications in that they provide a context in which the nature of scientific practice can be experienced explicitly and implicitly by constructing and testing models. Second, from the beginning of the activity, epistemic criteria such as empirical coherence, comprehensiveness, analogy, simplicity, and implementation were not strictly adapted and dynamically flexibly adapted according to the context. Third, the study of epistemic criteria in various contexts as well as in the context of this study will broaden the horizon of understanding the nature of scientific practice. Simulation activity, which is the context of this study, can lead to research related to computational thinking that will be more important in future society. We expect to be able to lead more discussions by furthering this study by elaborating and systematizing its context and method.

Geological Characteristics of Extra Heavy Oil Reservoirs in Venezuela (베네주엘라 초중질유 저류층 지질 특성)

  • Kim, Dae-Suk;Kwon, Yi-Kyun;Chang, Chan-Dong
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.83-94
    • /
    • 2011
  • Extra heavy oil reservoirs are distributed over the world but most of them is deposited in the northern part of the Orinoco River in Venezuela, in the area of 5,500 $km^2$, This region, which has been commonly called "the Orinoco Oil Belt", contains estimated 1.3 trillion barrels of original oil-in-place and 250 billion barrels of established reserves. The Venezuela extra heavy oil has an API gravity of less than 10 degree and in situ viscosity of 5,000 cP at reservoir condition. Although the presence of extra heavy oil in the Orinoco Oil Belt has been initially reported in the 1930's, the commercial development using in situ cold production started in the 1990's. The Orinoco heavy oil deposits are clustered into 4 development areas, Boyaco, Junin, Ayachoco, and Carabobo respectively, and they are subdivided into totally 31 production blocks. Nowadays, PDVSA (Petr$\'{o}$leos de Venzuela, S.A.) makes a development of each production block with the international oil companies from more than 20 countries forming a international joint-venture company. The Eastern Venezuela Basin, the Orinoco Oil Belt is included in, is one of the major oil-bearing sedimentary basins in Venezuela and is first formed as a passive margin basin by the Jurassic tectonic plate motion. The major source rock of heavy oil is the late Cretaceous calcareous shale in the central Eastern Venezuela Basin. Hydrocarbon materials migrated an average of 150 km up dip to the southern margin of the basin. During the migration, lighter fractions in the hydrocarbon were removed by biodegradation and the oil changed into heavy and/or extra heavy oil. Miocene Oficina Formation, the main extra heavy oil reservoir, is the unconsolidated sand and shale alternation formed in fluvial-estuarine environment and also has irregularly a large number of the Cenozoic faults induced by basin subsidence and tectonics. Because Oficina Formation has not only complex lithology distribution but also irregular geology structure, geological evolution and characteristics of the reservoirs have to be determined for economical production well design and effective oil recovery. This study introduces geological formation and evolution of the Venezuela extra heavy oil reservoirs and suggest their significant geological characteristics which are (1) thickness and geometry of reservoir pay sands, (2) continuity and thickness of mud beds, (3) geometry of faults, (4) depth and geothermal character of reservoir, (5) in-situ stress field of reservoir, and (6) chemical composition of extra heavy oil. Newly developed exploration techniques, such as 3-D seismic survey and LWD (logging while drilling), can be expected as powerful methods to recognize the geological reservoir characteristics in the Orinoco Oil Belt.

Aspect of the chief of state guard EMP (Electro Magnetic Pulse) protection system for the consideration (국가원수 경호적 측면에서의 EMP(Electro Magnetic Pulse) 방호 시스템에 대한 고찰)

  • Jung, Joo-Sub
    • Korean Security Journal
    • /
    • no.41
    • /
    • pp.37-66
    • /
    • 2014
  • In recent years, with the development of computers and electronics, electronics and communication technology in a growing and each part is dependent on the cross-referencing makes all electronic equipment is obsolete due to direct or indirect damage EMP. Korea and the impending standoff North Korea has a considerable level of technologies related to the EMP, EMP weapons you already have or in a few years, the development of EMP weapons will complete. North Korea launched a long-range missile and conducted a nuclear test on several occasions immediately after, when I saw the high-altitude nuclear blackmail has been strengthening the outright offensive nuclear EMP attacks at any time and practical significance for the EMP will need offensive skills would improve. At this point you can predict the damage situation of Korea's security reality that satisfy the need, more than anything else to build a protective system of the EMP. The scale of the damage that unforeseen but significant military damage and socio-economic damage and fatalities when I looked into the situation which started out as a satellite communications systems and equipment to attack military and security systems and transportation, finance, national emergency system, such as the damage elsewhere. In General, there is no direct casualties reported, but EMP medical devices that rely on lethal damage to people who can show up. In addition, the State power system failure due to a power supply interruption would not have thought the damage would bring State highly dependent on domestic power generation of nuclear plants is a serious nuclear power plant accident in the event of a blackout phenomenon can lead to the plant's internal problems should see a forecast. First of all, a special expert Committee of the EMP, the demand for protective facilities and equipment and conduct an investigation, he takes fits into your budget is under strict criteria by configuring the contractors should be sifting through. He then created the Agency for verification of performance EMP protection after you have verified the performance of maintenance, maintenance, safety and security management, design and construction company organized and systematic process Guard facilities or secret communications equipment and perfect for the EMP, such as protective equipment maneuver system should take.

  • PDF