• Title/Summary/Keyword: Design return period

Search Result 235, Processing Time 0.025 seconds

Effects of Seismic Loads with Different Return Period on Residential Building with RC Shear Wall Structure under Construction (주거용 RC 벽식 건물의 시공 중 재현주기에 따른 지진하중의 영향)

  • Choi, Seong-Hyeon;Kim, Jea-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.43-50
    • /
    • 2022
  • Even though the structural safety is confirmed in the design stage, the structural safety is not guaranteed in the construction stage because the structural system is not completed. In addition, since the construction period is shorter than the period of use of the building after completion, it is excessive to apply the same seismic load to the construction stage as in the design stage. ASCE 37-14 presents the concept of seismic load reduction factor during construction, but does not provide a clear application method. Therefore, in this study, the seismic load reduced according to the return period was applied to the example model of a residential middle-rise RC building. The construction stage of the example model was divided into five-story units, and seismic load with the change of the return period was applied to the construction stage models to analyze the change of seismic load during construction and to check the sectional performances of structural members. By comparing the design strength ratio of the shear wall at the design stage and the construction stage, the range of seismic load magnitudes that can assure the safety during construction of a residential middle-rise RC building was analyzed in terms of the return period.

Do good return policies work across cultures? Effect of lenient return policies on online shopper perceptions in Eastern culture

  • Yang, SuJin;Choi, Yun Jung
    • Asia Marketing Journal
    • /
    • v.15 no.2
    • /
    • pp.75-97
    • /
    • 2013
  • While good return policies are suggested as one of the critical services for e-commerce, ambivalence between the burden of the cost and shoppers' satisfaction may prevent e-tailers from increasing their level of leniency. Based on the S-O-R model, this study has attempted to develop a grounded theory to explain how lenient return policies shape online shoppers' perceptions and responses, with a focus on cultural influences in the relationship. In order to check the cultural effects of the lenient return policy, thirty two female and eleven male undergraduate students in South Korean shoppers, who are accustomed to strict return policies, participated in the semi-structured interview. A series of open-ended questions were designed to explore consumers' reactions toward four different levels of the lenient return policy: from the strict type in South Korea to the lenient type in the U.S. Using qualitative research methods, this research has defined three types of dimensions of lenient return policy: return possible period, complexity of progress, and other restrictions. While previous researchers did not pay much attention, the last dimension, other restrictions, is shown to be the most significant in influencing online shoppers' perceptions, especially in South Korea. Also, the impacts on online shoppers' perceptions from the three types of sub-dimensions of return policy were somewhat different. Whereas a longer return possible period was considered more favorable, a medium level of complexity and restrictions were considered more desirable. In summary, this result showed that shoppers in Eastern cultures, i.e. South Korean online shoppers, seem favorable to a medium level of lenient return policies, while allowing for taking precautions against possible fraudulent behaviors and setting other restrictions. Therefore, most of retailers in South Korea recommended that e-tailers who adopt the most lenient return policies raise the bar to guard ethical shoppers from fraudulent users. Next, lenient return policies can enhance ease of use, usefulness, affect, and trust while relieving perceived risk, which is connected to intention to purchase, satisfaction, and loyalty. Interestingly, lenient return policies are more likely to change the behavioral responses of online shoppers, such as return and purchase, rather than change their attitudes or beliefs such as image, satisfaction, and loyalty. This tendency can be seen more clearly in the direct influences of return policy on responses. The reaction to lenient return policy is mostly the intention to return or to purchase. This suggests that return policy serves the e-tailers as a powerful tool in increasing online shoppers' purchase intention at the moment of purchase. Therefore, e-tailers who plan to expand their market to eastern countries, including South Korea, have to build a shield of restrictions around their lenient return policy, rather than immediately applying their original liberalized return policy. Also, e-tailers in South Korea need to review their strict and undifferentiated return policies to deal with the unsatisfied reactions of online shoppers toward their normal return policies. Although the present study was confined to the return policies currently being practiced by popular e-tailers, it would be worthwhile to develop effective return policies separately for each country, especially South Korea, keeping the culture of the relevant country in mind.

  • PDF

Seismicity and seismic hazard assessment for greater Tehran region using Gumbel first asymptotic distribution

  • Bastami, Morteza;Kowsari, Milad
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.355-372
    • /
    • 2014
  • Considering the history of severe earthquakes and the presence of active faults in the greater Tehran region, the possibility of a destructive earthquake occurring is high and seismic hazard analysis is crucial. Gumbel distributions are commonly-used statistical distributions in earthquake engineering and seismology. Their main advantage is their basis on the largest earthquake magnitudes selected from an equal-time predefined set. In this study, the first asymptotic distribution of extremes is used to estimate seismicity parameters and peak ground acceleration (PGA). By assuming a Poisson distribution for the earthquakes, after estimation of seismicity parameters, the mean return period and the probable maximum magnitude within a given time interval are obtained. A maximum probable magnitude of 7.0 has a mean return period of 100 years in this region. For a return period of 475 years, the PGA in the greater Tehran region is estimated to be 0.39g to 0.42g, depending on local site conditions. This value is greater than that of the Iranian Code for Seismic Design of Buildings, indicating that a revision of the code is necessary.

Ductility-based design approach of tall buildings under wind loads

  • Elezaby, Fouad;Damatty, Ashraf El
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • The wind design of buildings is typically based on strength provisions under ultimate loads. This is unlike the ductility-based approach used in seismic design, which allows inelastic actions to take place in the structure under extreme seismic events. This research investigates the application of a similar concept in wind engineering. In seismic design, the elastic forces resulting from an extreme event of high return period are reduced by a load reduction factor chosen by the designer and accordingly a certain ductility capacity needs to be achieved by the structure. Two reasons have triggered the investigation of this ductility-based concept under wind loads. Firstly, there is a trend in the design codes to increase the return period used in wind design approaching the large return period used in seismic design. Secondly, the structure always possesses a certain level of ductility that the wind design does not benefit from. Many technical issues arise when applying a ductility-based approach under wind loads. The use of reduced design loads will lead to the design of a more flexible structure with larger natural periods. While this might be beneficial for seismic response, it is not necessarily the case for the wind response, where increasing the flexibility is expected to increase the fluctuating response. This particular issue is examined by considering a case study of a sixty-five-story high-rise building previously tested at the Boundary Layer Wind Tunnel Laboratory at the University of Western Ontario using a pressure model. A three-dimensional finite element model is developed for the building. The wind pressures from the tested rigid model are applied to the finite element model and a time history dynamic analysis is conducted. The time history variation of the straining actions on various structure elements of the building are evaluated and decomposed into mean, background and fluctuating components. A reduction factor is applied to the fluctuating components and a modified time history response of the straining actions is calculated. The building components are redesigned under this set of reduced straining actions and its fundamental period is then evaluated. A new set of loads is calculated based on the modified period and is compared to the set of loads associated with the original structure. This is followed by non-linear static pushover analysis conducted individually on each shear wall module after redesigning these walls. The ductility demand of shear walls with reduced cross sections is assessed to justify the application of the load reduction factor "R".

Technical considerations for engineering of crane pedestal operated in North-Western Australia Offshore (North-Western Australia 해상에 운용되는 Offshore Crane Pedestal 설계)

  • Song, Jun-Ho;Kim, Yong-Woon;LEE, Kyung-Seok;Kim, Man-Soo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.34-40
    • /
    • 2015
  • The design, procurement and fabrication of FPSO project ordered by Inpex Browse, Ltd. have been currently carried out by DSME(Daewoo Shipbuilding Marine and Engineering Co.). The unit will be installed and operated in the Ichthys field offshore of North-Western Australia and there are the particular design requirements to do with performance on the environment loads corresponding to max. 10,000 years return period wave. Also, the operational life of FPSO has to be over 40 years. With this background, this paper introduces the structural design procedure of crane pedestal foundation operated in north-western Australia offshore. The design of crane pedestal foundation structure is basically based on international design code (i.e. API Spec. 2C), Classification society's rule and project specifications. The design load cases are mainly divided into the crane normal operating conditions and crane stowed conditions according to environment conditions of the offshore with 1-year, 5-year, 10-year, 200-year and 10,000-year return period wave. This design experience for crane pedestal foundation operated in north-western Australia offshore will be useful to do engineering of other offshore crane structures.

  • PDF

Prediction of Extreme Design Wave Height (극한 설계 파고의 추정)

  • Chon, Y.K.;Ha, T.B.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.145-152
    • /
    • 1996
  • In this study, the technique to evaluate the extreme design wave height of certain return period is developed from the given measured or hindcasted sea state data of concerned area for limited period. By using the order statistics and Monte Carlo Simulation method, the best fit probability distribution function with proper parameters describing the given wave height data is chosen, from which extreme design wave height can be predicted by extrapolation to the desired return period. The fitness and the confidence limit of the chosen probability function are also discussed. Application calculation is carried out for the wave height data given by applying the Wilson wave model theory to major 50 typhoon wind data affecting Korean South coast during the year from 1938 to 1987.

  • PDF

Feasibility Study of Forestry Project in Sarawak State, Malaysia

  • Woo, Heesung;Turner, Paul;Kang, Byongrho;Jang, Jaeyoung;Woo, Jongchoon
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.4
    • /
    • pp.352-358
    • /
    • 2018
  • This research paper investigates available options for implementing clean development mechanism (CDM) project in Sarawak state, Malaysia. To investigate economic feasibility, data was collected using survey and field research methods. Also, economic analysis was estimated using net present value (NPV), internal rate of return (IRR) and payback period (PBP) during the 30 years CDM: afforestation and reforestation periods. The result of economic analysis indicated that, the payback period was estimated at 9 years with 18 percent of internal rate of return (IRR). This study also highlighted that CDM biomass supply project have a lot of challenges due to the reduction and exclusion of bio-Solid Recovered Fuel (SRF), supply and demand scenario, and impact of restriction of illegal logging in Malaysia. This study results demonstrate the methodology and guideline for future CDM investment and projects.

Statistical Studies on the Derivation of Design Low Flows (II) (설계갈수량의 유도를 위한 수문통계학적 연구(II))

  • 이순혁;박명근;박종국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.4
    • /
    • pp.39-47
    • /
    • 1992
  • Derivation of reasonable design low flows was attempted by comparative analysis of design low flows was derived by Power and SMEMAX transformations for the normalizations of skewed distribution and by Type m extremal distribution presented in the first report of this study with annual low flows in the five watersheds of main river basins in Korea. The results were anslyzed and summarized as follows. 1.Basic statistics of annual low flows for the selected watersheds were calculated by using Power and SMEMAX transformations. 2.Power thansformation has found to be the best for the normalization of skewed distribution among others including log, square root and SMEMAX transformations. 3.Design low flows for the selected watersheds were derived by the Power and SMEMAX transformations. 4.Judging by the relative suitabilities of the Type III extremal distribution, Power and SMEMAX transformation, it was found that design low flows of all methods are closer to the observed data within 10 years of the return period and those of Power transformation can be acknowledzed as a reasonable one among others from the viewpoint of the median between values of Type m extremal distribution and SMEMAX transformation in addition to closing the observed than others over 10 years of the return period.

  • PDF

Study of Stability for Armor Weight of Stand-alone Caisson at Yongsu Wave Power Plant (용수 파력발전소 사례에서 독립 케이슨의 피복석 안정성 연구)

  • Kim, Gunwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.478-484
    • /
    • 2019
  • The submarine cable for Yongsu wave power plant was cut in 2014 winter. This study investigated the probability of high-wave occurrence exceeding the 50-year return period and the underestimation of armor unit weight used to protect the cable. The observation data from KMA buoy and the hindcast wave data were reviewed to determine the return period of wave height during the winter. In order to investigate the armor unit weight of cable-protection, we calculated the required weight of armor unit using not only Design Standard for Harbor and Fishery Port, but also the previous researches for the wave with large incident angle. As a result, it appeared that the high wave exceeding the 50-year return period did not occur during the winter of 2014 and the armor unit weight of the cable protection was not sufficient to sustain the obliquely incident wave, which induced the cable protection failure.

Analysis of Failure Probability of Armor Units and Uncertainties of Design Wave Heights due to Uncertainties of Parameters in Extreme Wave Height Distributions (극치파고분포의 모수 불확실성에 따른 설계파고의 불확실성 및 피복재의 파괴확률 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.120-125
    • /
    • 2010
  • A Monte-Carlo simulation method is proposed which can take uncertainties of scale and location parameters of Gumbel distribution into account straightforwardly in evaluating significant design wave heights with respect to return periods. The uncertainties of design wave heights may directly depend on the amounts of uncertainties of scale parameter and those distributions may be followed by Gumbel distribution. In case of that the expected values of maximum significant wave height during lifetime of structures are considered to be the design wave heights, more uncertainties are happened than in those evaluated according to return periods with encounter probability concepts. In addition, reliability analyses on the armor units are carried out to investigate into the effects of the uncertainties of design wave heights on the probability of failure. The failure probabilities of armor units to 5% damage level for 50 return periods are evaluated and compared according to the methods of taking uncertainties of design wave heights into account. It is found that the probabilities of failure may be distributed into wide ranges of bounds when the uncertainties of design wave heights are assumed to be same as those of annual maximum significant wave heights.