• Title/Summary/Keyword: Design return period

Search Result 235, Processing Time 0.022 seconds

Estimation of Wind Speeds for Return Period in Cellularized District of Basan by the Recent Meteorological Data (최근 기상 자료에 의한 부산의 세분화된 지역별 재현기대 풍속 산정)

  • An, Jae-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.158-163
    • /
    • 2012
  • This study is concerned with the estimation of wind speeds for return period in cellularized district of Busan by the recent meteorological data. Recently standard of the wind load in Busan area is determined by using meteorological wind speed data which is observed on Automated Synoptic Observing System(ASOS) only. Applying the existing basic wind speed that is 40m/s to the construction design of Busan area is inefficient. Because the wind speeds of Busan area show different amounts depend on the location of cellularized district. This research analyze the observed data of wind speeds of cellularized district in Busan based on Automate Weather System(AWA). In addition that we compute regional wind speeds for return period by using Gumbel distribution and study and compare with the existing basic wind speeds after evaluating appropriateness by Hazen's plot method.

Seismic Performance Evaluation of Highrise Steel Diagrid Frames (초고층 철골대각가새골조의 내진성능평가)

  • Kim, Seon-Woong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.307-317
    • /
    • 2011
  • This paper is to investigate the possibility of the elastic seismic design for highrise buildings through seismic performance evaluation for potential earthquakes that wind-designed highrise buildings located in strong wind zone and low seismicity can be experienced. Highrise steel diagrid frames which is the most loved structural system in recent years were wind-designed and the substantial system overstrength due to wind design procedure is verified, For the highrise steel diagrid frames, the response spectrum analysis and the seismic performance evaluation by various soil sites were conducted. It was showed that highrise steel diagrid frames with slenderness of greater than 5.2 under strong wind and low seismic zones such as Korea peninsula can resist elastically for the 500 year return period earthquake and have the possibility of seismic design for the 2400 year return period earthquake. In the member level, highrise steel diagrid frames with slenderness of greater than 5.2 all presented the immediate occupancy level regardless of soil sites for the 500 year return earthquake and excluding the $S_E$ soil site for the even 2400 year return period earthquake. In the system level, highrise steel diagrid frames with slenderness of greater than 5.2 showed the immediate occupancy level for $S_A$ and $S_B$ soil sites and the life safety for $S_C$ to $S_E$ soil site in the 500 year return period. The seismic performance level of highrise steel diagrid frames for the 2400 year return period earthquake displayed one step lower than the 500 year return period earthquake.

Generation of Design Response Spectrum and Earthquake Ground Motion Considering the Recurrence Period (재현주기에 따른 응답스펙트럼과 설계지반운동 산정방법)

  • 이현호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.58-65
    • /
    • 1998
  • A purpose of this research is to develope the calculation methods of design input seismic loads, Where, calculation methods are ; (1) Considering different recurrence period of earthquakes which was proposed by ATC 14. (2) Using earthquake records which was modified Korean codes. Responce spectra that was adopted by codes has an estimated recurrence interval of 500 years, with approximately a 90 percent probability of not being exceeded in 50 years. But If we considered the life-time of existing buildings in some cases, response spectra be modified with return period of earthquakes. If we be design highrise and irregular buildings, dynamic analysis method that use time history records should be used. But in Korea, time history records of earthquakes was very few. Therefore to use foreign countries's earthquake record, it is need to select of records considered Korean coeds. As a results, this study propose a calculation method of seismic design input loads that considered return period of earthquakes and also propose using method of earthquakes.

  • PDF

Analysis of the Effect of Seismic Loads on Residential RC Buildings using the Change in Building Size and Return Period (건물 규모 및 재현주기 변화에 따른 주거용 RC건물에 대한 시공 중 지진하중의 영향 분석)

  • Seong-Hyeon Choi;Jae-Yo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Unlike a completed building, a building under construction may be at risk in terms of safety if a load exceeds the value considered in the design stage owing to various factors, such as a load action different from that in the design stage and insufficient concrete strength. In addition, if an earthquake occurs in a building under construction, greater damage may occur. Therefore, this study studied example models with various sizes of 5, 15, 25, and 60 floors for typical building types and analyzed the effects of seismic load on buildings under construction using construction-stage models according to frame completeness. Because the construction period of the building is much shorter than the period of use after completion, applying same earthquake loads as the design stage to buildings under construction may be excessive. Therefore, earthquakes with a return period of 50 to 2,400 years were applied to the construction stage model to review the seismic loads and analyze the structural performances of the members. Thus, we reviewed whether a load exceeding that of the design stage was applied and the return period level of the earthquake that could ensure structural safety. In addition, assuming the construction period of each example model, the earthquake return period according to the construction period was selected, and the design appropriateness with the selected return period was checked.

Minimum loading requirements for areas of low seismicity

  • Lam, Nelson T.K.;Tsang, Hing-Ho;Lumantarna, Elisa;Wilson, John L.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.539-561
    • /
    • 2016
  • The rate of occurrence of intraplate earthquake events has been surveyed around the globe to ascertain the average level of intraplate seismic activities on land. Elastic response spectra corresponding to various levels of averaged (uniform) seismicity for a return period of 2475 years have then been derived along with modifying factors that can be used to infer ground motion and spectral response parameters for other return period values. Estimates derived from the assumption of uniform seismicity are intended to identify the minimum level of design seismic hazard in intraplate regions. The probabilistic seismic hazard assessment presented in the paper involved the use of ground motion models that have been developed for regions of different tectonic and crustal classifications. The proposed minimum earthquake loading model is illustrated by the case study of Peninsular Malaysia which has been identified with a minimum effective peak ground acceleration (EPGA) of 0.1 g for a return period of 2475 years, or 0.07 g for a notional return period of 475 years.

Seismic Vulnerability Analysis of River Levee by Earthquake Return Period (지진 재현주기에 따른 하천 제방의 지진취약성 분석)

  • Kim, Kyung-Oh;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.679-686
    • /
    • 2020
  • In this study, the seismic vulnerability of public river levees was analyzed quantitatively. Input seismic waves were generated in Pohang seismic waves in return periods of 200, 500, 1000, and 2400 years. The behavior of the levee was analyzed by seismic vulnerability analysis according to the return period. The displacement that occurs during an earthquake showed the same tendency as the input seismic wave and was largest in the return period of 2400 years. An analysis of the sliding stability revealed a 31.5% and 26.7% decrease in the sliding safety factor for the return period of 2400 for the landside and waterside, respectively. An examination of liquefaction by the q/p' ratio showed that the seepage line inside the embankment rises due to earthquakes. As a result, in the case of a return period of 2400 years, most embankments generate liquefaction, making them vulnerable to earthquakes. Through this research, it will be necessary to re-establish domestic seismic-design standards and establish clear standards for the results through a dynamics method.

Estimation of Runoff Coefficient according to Revision of Design Criteria, in case of Park (설계기준 변경에 따른 유출계수 추정 - 공원을 중심으로 -)

  • Kim, Taegyun;Kim, Tae Jin;Lee, Bo-Rim
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.209-217
    • /
    • 2016
  • The rational method is formed area, rainfall intensity and runoff coefficient that is representation of land use or surface type. A runoff coefficient is a range for a each surface conditions. Drainage Sewer Design Guideline revised at 2011 proposes return periods 10~30 year instead of 5~10 year for increasing design flood. Ponce and ASCE refer higher values of runoff coefficient require for higher values of rainfall intensity and return period, therefore runoff coefficient had to be corrected but not. In case of park, land use and surface type are different from Korea and U.S, so impervious area ratio is different. The runoff coefficient for park is estimated considering with impervious area ratio and return period. 1,004's parks in 20 cities are randomly selected for impervious area ratio and runoff coefficient is estimated. And a proportion of 30 year return period runoff coefficient to 10 year return period with rainfall duration is calculated for 69 weather stations. The estimated runoff coefficient is 0.43~0.54 for return period 10~30 year and the difference of region and rainfall duration is not significant.

Estimation of Rainfall Erosivity in USLE (범용토양유실공식의 강우침식도 추정)

  • Kim, Chang-Wan;U, Hyo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.457-467
    • /
    • 1999
  • No complete methods for estimating soil loss, included by rain storms, from a small watershed are available yet, and the best recommended method is to use measured data from the watershed. When no measured data is available from the watershed, empirical models for estimating the soil loss, such as the Universal Soil Loss Equation(USLE), is well recommended in practice. For using this equation, it is necessary to estimated the rainfall erosivity, commonly expressed as R, of the watershed. In this study, first we collected data of the probable rainfalls with the return periods of 2, 5, 10, 20, 30, 50, 80, 100, 200, and 500-yr and with the duration hours of 0.5, 1, 2, 3, 6, 12, and 24-hr. Using this data, we calculated the design values for R for the return period of 24-hr at each major rainfall-measuring station nationwide. Then we constructed the iso-erodent map of Korea for each return period of the 24-hr design storm. This study shows that the 24-hr duration iso-erodent map of the 5-yr return period is very similar to the annual average iso-erodent map of Korea. This study also shows that the 24-hr duration R-values of a certain return period can be estimated by multiplying certain parameters, obtained from this study, to the 24-hr duration R-values for the 5-yr return period or the annual average R-values. Finally, the R-values of the design storm with the 24-hr return period obtained from this study can be used for designing the settling basins at small watersheds.

  • PDF

An Analysis on Inundation Characteristics of Urban Watershed according to Variation in Return Period of Design Rainfall (설계 강우량의 재현빈도 변화에 따른 도시유역의 침수특성 분석)

  • Park, InHyeok;Ha, SungRyong
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.585-593
    • /
    • 2013
  • This study aims to investigate inundation characteristics such as inundated area, inundation depth according to variation in return period of design rainfall and to draw a comparison between the inundation characteristics by adapting design storm using dual-drainage model. Lidar data is used to construct terrain data with $1m{\times}1m$ resolution in Cheongju. The designed storm by return periods(10year, 30year, 50year and 200year) are acquired from Intensity Duration Frequency curve, which are distributed in 5 minutes interval using Huff's method. As a results, the inundation volume is linearly increased, but inundated area is gradually increased in accordance with swell of return period for design storm. On the other hands, as a result of calculating discharge capacity for each points, deficit of discharge capacity is not observed using designed storm of 10 year return period at every points. If the return period is increased up more than 10 years, both the deficit of discharge capacity for each PT and entire study area are enlarged drastically.

Target Reliability Index and Load-resistance Factors for the Gravitational Loads-governed Limit States for a Reliability-based Bridge Design Code (신뢰도기반 교량설계기준의 중력방향하중 지배 한계상태에 대한 목표신뢰도지수 및 하중-저항계수)

  • Kim, Jeong-Gon;Kim, Ho-Kyung;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.299-309
    • /
    • 2022
  • This paper presents a new class of the vehicular live load factor for a reliability-based bridge design code. The significance of the current vehicular live load factor of 1.8 is investigated based on the return period of the vehicular live load and the design life of a bridge. It is shown that the current vehicular live load factor corresponds to a return period of 6.7 million years for a 100-year design life, which seems to be unrealistic in an engineering sense, and that the target reliability of 3.72 is set to too high without any reasoning for the gravitational load-governed limit state compared with that of the other limit states. In case the same return period as the design wind velocity or the ground acceleration is employed for the vehicular live load, the corresponding vehicular live load factor becomes around 1.15, and the target reliability index for the return period may be selected as 2.0 or 2.5 depending on the governing load effect. The complete sets of the load-resistance factors for the proposed target reliability indices are evaluated through optimization.