• Title/Summary/Keyword: Design resistance

Search Result 3,756, Processing Time 0.031 seconds

Comparative Study of Design Methods for Manufacturing of Steel Structure (철구조물의 설계방법에 대한 비교 연구)

  • Kim, Dong-Kwon;Choi, Jae-Seung;Hwang, Suk-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.357-362
    • /
    • 2000
  • Allowable stress design(ASD) method has been widely used to design steel structures such as boiler and heat recovery steam generator(HRSG) of power plant. However, many researchers are recently intrested in road and resistance factor design(LRFD) method which may take the place of ASD. In this work, the weight calculation of steel structure was compared when ASD and LRFD were applied respectively. For the calculation of weight of steel structure, computer program was developed and applied to obtain beam weight. Using this program and GTSTRUDL, structural design program, weight of steel structure is calculated. As a result of weight calculation, maximum 5.4% of weight reduction is achieved among examples of this study by applying LRFD comparing with the result of ASD, and those results quite dependent on the applied load and member classification.

  • PDF

Resistance Factors for Drilled Shafts Embedded in Weathered Rock (풍화암에 근입된 현장타설말뚝의 저항계수 산정)

  • Yoon, Hong-Jun;Jung, Sung-Jun;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.107-116
    • /
    • 2007
  • Load and Resistance Factor Design (LRFD) method is being used increasingly in geotechnical design practice worldwide, and is expected to completely replace the current Allowable Stress Design (ASD) method in the near future. LRFD has advantages over ASD in that it allows the design of superstructures and substructures at a consistent reliable level by quantification of failure probability based on reliability analysis. At present, resistance factors for cast-in-place piles embedded in rocks are determined by AASHTO only for the intact rock conditions. In Korea, however, most of the bedrocks in which piles are embedded are heavily weathered. Thus, this study will try to determine the resistance factors of heavily weathered rocks (so-called intermediate goo-materials). To this aim, reliability analysis was carried out to evaluate the resistance factors of cast-in-place piles embedded in intermediate geo-materials in Korea. Pile load test data of 21 cast-in-place piles of 4 construction sites were used for the analysis. Depending on the method which calculates the pile capacities, the resulting resistance factors ranged between 0.1 and 0.6.

A Study on the Preliminary Design of Hull Form considering Viscuous Resistance (점성저항을 고려한 선형의 초기설계에 관한 연구)

  • 이경도
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.112-116
    • /
    • 2000
  • To determine a preliminary hull form with a minimum viscous resistance this study considers the systematic variations of full form and calculations of the viscous resistance for varied hull forms. A preliminary hull form can be determined from a parametric study of viscous resistance.

  • PDF

Determination of Resistance Factors of Load and Resistance Factor Design for Drilled Shaft Based on Load Test (LRFD 설계를 위한 현장타설말뚝의 주면지지력 저항계수 산정)

  • Kim, Seok-Jung;Kwon, Oh-Sung;Jung, Sung-Jun;Han, Jin-Tae;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.17-24
    • /
    • 2010
  • Load Resistance Factor Design method is used increasingly in geotechnical design world widely and resistance factors for drilled shafts are suggested by AASHTO. However, these resistance factors are determined for intact rock conditions; by comparison, most of bedrocks in Korea have weathered condition, so that applying the AASHTO resistance factors is not reasonable. Thus, this study suggests the proper resistance factors for design of drilled shaft in Korea. The 22 cases of pile load test data from 8 sites were chosen and reliability-based approach is used to analyze the data. Reliability analysis was performed by First Order Second Moment Method (FOSM) applying 4 bearing capacity equations. As a result, when the Factor of Safety (FOS) was selected as 3.0, the target reliability indexes (${\beta}_c$) were evaluated as 2.01~2.30. Resistance factors and load factors are determined from optimization based on above results. The resistance factors ranged between 0.48 and 0.56 and load factors for dead load and live load are evaluated as approximately 1.25 and 1.75 respectively. However, when the target reliabilities are considered as 3.0, the resistance factors are evaluated as approximately 50% of the results when the target reliability index was 2.0.

Estimation of LRFD Resistance Bias Factors for Pullout Resistance of Soil-Nailing (쏘일네일링의 인발저항에 대한 LRFD 저항편향계수 산정)

  • Son, Byeong-Doo;Lim, Heui-Dae;Park, Joon-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.5-16
    • /
    • 2015
  • Considering the conversion of the Korea Construction Standards to Limit State Design (LSD), we analyzed the resistance bias factor for pullout resistance, as a part of the development of the Load and Resistance Factor Design (LRFD) for soil nailing; very few studies have been conducted on soil nailing. In order to reflect the local characteristics of soil nailing, such as the design and construction level, we collected statistics on pullout tests conducted on slopes and excavation construction sites around the country. In this study a database was built based on the geotechnical properties, soil nailing specifications, and pullout test results. The resistance bias factors are calculated to determine the resistance factor of the pullout resistance for gravity and pressurized grouting method, which are the most commonly used methods in Korea; moreover, we have relatively sufficient data on these methods. We found the resistance bias factors to be 1.144 and 1.325, which are relatively conservative values for predicting the actual ultimate pullout resistance. It showed that our designs are safer than those found in a research case in the United States (NCHRP Report); however, there was an uncertainty, $COV_R$, of 0.27-0.43 in the pullout resistance, which is relatively high. In addition, the pressurized grouting method has a greater margin of safety than the gravity grouting method, and the actual ultimate pullout resistance determined using the pressurized grouting method has low uncertainty.

Design Method for Micropiles (마이크로파일의 설계법)

  • 김원철;천병식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.1-26
    • /
    • 2002
  • This study addresses preliminary design and construction specification for micropiles. Especially several design methods for micropiles in sands, clays or mixed soil layers are described. The bearing capacity of micropiles are mainly depended upon the shaft resistance. Therefore, the pressure of grouting is one of the most important design parameters for the bearing capacity evaluation of micropile. There is no theoretical way to evaluate the shaft resistance of micropile up to now because grouting method is another key parameter for micropile design approach. Because of above reasons, the present design approaches of the micropile are based on the collected field data The bearing capacities of designed micropiles should be verified by static load tests before and after construction at the planned site.

  • PDF

AUV hull lines optimization with uncertainty parameters based on six sigma reliability design

  • Hou, Yuan hang;Liang, Xiao;Mu, Xu yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.499-507
    • /
    • 2018
  • Autonomous Underwater Vehicle (AUV), which are becoming more and more important in ocean exploitation tasks, needs energy conservation urgently when sailing the complex mission path in long time cruise. As hull lines optimization design becomes the key factor, which closely related with resistance, in AUV preliminary design stage, uncertainty parameters need to be considered seriously. In this research, Myring axial symmetry revolution body with parameterized expression is assumed as AUV hull lines, and its travelling resistance is obtained via modified DATCOM formula. The problems of AUV hull lines design for the minimum travelling resistance with uncertain parameters are studied. Based on reliability-based optimization design technology, Design For Six Sigma (DFSS) for high quality level is conducted, and is proved more reliability for the actual environment disturbance.

Comparison of Rock Socketed Pile Design Methods for Shaft Resistance (암반에 근입된 현장타설말뚝의 마찰력 설계법 비교)

  • 조천환;이명환;조영훈;유한규;박언상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.365-372
    • /
    • 2002
  • Drilled and rock socketed piles are of increasing significance due to environmental(noise and vibration) and structural(increase of loads to carry) considerations. Drilled and rock socketed piles will therefore have much higher economic significance in the near future. The existing design of piles socketed into rock is traditionally based on empirical methods which are very unreliable. It is therefore necessary to use high factors of safety with these methods. It is appraised that this is inefficient and expensive and the potential savings from using more reliable design methods are very necessary. In this point of view, a new design approach(Seidel & Collinwood, 2001) has recently been developed. This paper reviews and analyses state-of-the-art of rock socketed pile design methods for shaft resistance. On the basis of the analysis results, some recommendations for improvement of existing design method in Korea are given in this paper.

  • PDF

Tractor Design for Rotary Tillage Considering Lift Resistance (상승저항력을 고려한 로터리경운작업을 위한 승용트랙터의 설계)

  • Sakai, J.;Yoon, Y.D.;Choe, J.S.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.344-350
    • /
    • 1993
  • The purpose of this study is to develop design equations to calculate optimum specifications and dimensions such as weight, engine horsepower, etc. of the tractor necessary to perform stable rotary tillage. The main results of this study are as follows. 1. A wheel-lug ought to receive a special resistance in downward direction which resists the lug's upward motion on wet sticky soil surface. The authors introduce a new academic name of the "lift resistance(上昇抵抗力, 상승저항력)" for such a force which resists retraction of a wheel lug from the soil in the upward trochoidal motion. This force is composed of the frictional force acting on the trailing and the leading lug side, and the "perpendicular adhesion(鉛直付着力, 연직부착력)" acting on the lug face and the undertread face on adhesive soil. 2. The "lift resistance ratio(上昇抵抗力係數, 상승저항력계수)" and the "perpendicular adhesion ratio(鉛直付着力係數, 연직부착력계수)" were defined, which are something similar to the definition of the motion resistance ratio, the traction coefficient, etc. 3. The design equation of the optimum weight of a rotary tiller mounted on the tractor derived by calaulating the forces acting on the rotary blades. 4. The design equations to calculate optimum specifications and dimensions such as weight, engine horsepower, etc. of the tractor necessary to perform stable rotary tillage were derived. It becomes clear that the optimum weight of a rotary tiller and a tractor can be estimated in planning design by means of putting about 21 design factors of the target into the equation. These equations are useful for planning design to estimate the optimum dimensions and specifications of a rotary tiller as well as a tractor by the use of known and/or unknown design parameters.

  • PDF

Approximate Optimization with Discrete Variables of Fire Resistance Design of A60 Class Bulkhead Penetration Piece Based on Multi-island Genetic Algorithm (다중 섬 유전자 알고리즘 기반 A60 급 격벽 관통 관의 방화설계에 대한 이산변수 근사최적화)

  • Park, Woo-Chang;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-43
    • /
    • 2021
  • A60 class bulkhead penetration piece is a fire resistance system installed on a bulkhead compartment to protect lives and to prevent flame diffusion in a fire accident on a ship and offshore plant. This study focuses on the approximate optimization of the fire resistance design of the A60 class bulkhead penetration piece using a multi-island genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class bulkhead penetration piece. For approximate optimization, the bulkhead penetration piece length, diameter, material type, and insulation density were considered discrete design variables; moreover, temperature, cost, and productivity were considered constraint functions. The approximate optimum design problem based on the meta-model was formulated by determining the discrete design variables by minimizing the weight of the A60 class bulkhead penetration piece subject to the constraint functions. The meta-models used for the approximate optimization were the Kriging model, response surface method, and radial basis function-based neural network. The results from the approximate optimization were compared to the actual results of the analysis to determine approximate accuracy. We conclude that the radial basis function-based neural network among the meta-models used in the approximate optimization generates the most accurate optimum design results for the fire resistance design of the A60 class bulkhead penetration piece.